/* Adept MobileRobots Robotics Interface for Applications (ARIA) Copyright (C) 2004, 2005 ActivMedia Robotics LLC Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc. Copyright (C) 2011, 2012, 2013 Adept Technology This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA If you wish to redistribute ARIA under different terms, contact Adept MobileRobots for information about a commercial version of ARIA at robots@mobilerobots.com or Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960 */ #ifndef ARRANGEDEVICELASER_H #define ARRANGEDEVICELASER_H #include "ariaTypedefs.h" #include "ArRangeDeviceThreaded.h" class ArDeviceConnection; /** Range device interface specialized for laser rangefinder sensors. This class is a subclass of ArRangeDeviceThreaded meant for any planar scanning lasers, like the SICK lasers, Hokoyo URG series lasers, etc. Unlike other base classes this contains the superset of everything that may need to be configured on any of the sensors, even though some subclasses may only provide some of those parameters and features. (This allows the configuration interfaces and parameter files to work for any laser type.) Normally, a program does not define or create any ArLaser objects directly. Instead, objects (device-specific subclasses of ArLaser) are created by ArLaserConnector::connectLasers() based on the robot parameter file and command line arguments, and the resulting ArLaser objects are stored in the ArRobot object Use ArRobot::getLaserMap() or ArRobot::findLaser() to access the ArLaser objects after calling ArLaserConnector::connectLasers(). The canSetDegrees(), canChooseRange(), canSetIncrement(), canChooseIncrement(), canChooseUnits(), canChooseReflectorBits(), canSetPowerControlled(), canChooseStartBaud(), and canChooseAutoBaud() and other similar functions are used by ArLaserConnector to test if a parameter is relevant to a specific laser type. @par Creating New ArLaser Subclasses If you want to create your own new class to implement a sensor not in ARIA, create a subclass of this class. ArUrg is the best current example of this. Call the laserAllow* functions in its constructor depending on what features that laser sensor has (use the laserAllowSet* functions if it is possible to set any value in a range, or use the laserAllow*Choices functions if it is only possible to set specific values). You may also want to use the override the laserSetName call so that your own mutexes will get named appropriately. You can use laserSetDefaultTcpPort to set the default TCP port (which you should do if the laser normally is connected to over TCP). You can use laserSetDefaultPortType to the type of port normally used (so that if a port is passed in we can make a reasonable guess as to what type, so that people don't always have to pass in a type). Before you connect you should call laserPullUnsetParams to fill in the parameters that weren't set explicitly with the default ones in the .p files. If the maximum range of the laser changes depending on settings (like on the LMS2xx) you should call laserSetAbsoluteMaxRange (after you call laserPullUnsetParamsFromRobot). Implement the blockingConnect, asyncConnect, disconnect, isConnected, and isTryingToConnect calls... while calling laserConnect, laserFailedConnect, laserDisconnectNormally, and laserDisconnectOnError calls to let the laser base class call the appropriate callbacks. You should use the laserCheckLostConnection in your runThread to see if the laser has lost connection (see its documentation for details). Then after you get your readings call laserProcessReadings to fill them from the raw buffer into the current and cumulative buffer (and call the reading callbacks). The internal* calls are all internal to the base class and shouldn't have to be used by inheriting classes. After you have created a new laser type you can add it to Aria by using the Aria::laserAddCreator call and then it will work like any of the built in laser types (see the documentation for that function for what the creator needs to do, and an example is ArLaserCreatorHelper in the ariaUtil.h/cpp files). Similiarly if you need a new connection type (ie not serial or tcp) you implement them and then use Aria::deviceConnectionAddCreator call to add new types so they too will then be treated the same as the built in Aria ones (ArDeviceConnectionCreatorHelper in ariaUtil.h/cpp file is the example for that one). @since 2.7.0 @ingroup ImportantClasses @ingroup DeviceClasses **/ class ArLaser : public ArRangeDeviceThreaded { public: /// Constructor AREXPORT ArLaser(int laserNumber, const char *name, unsigned int absoluteMaxRange, bool locationDependent = false, bool appendLaserNumberToName = true); /// Destructor AREXPORT virtual ~ArLaser(); /// Connect to the laser and block for the result AREXPORT virtual bool blockingConnect(void) = 0; /// Connect to the laser without blocking AREXPORT virtual bool asyncConnect(void) = 0; /// Disconnect from the laser AREXPORT virtual bool disconnect(void) = 0; /// See if the laser is connected AREXPORT virtual bool isConnected(void) = 0; /// See if the laser is trying to connect AREXPORT virtual bool isTryingToConnect(void) = 0; /// Sets the numter of seconds without a response until connection assumed lost AREXPORT virtual void setConnectionTimeoutSeconds(double seconds); /// Gets the number of seconds without a response until connection assumed lost AREXPORT virtual double getConnectionTimeoutSeconds(void); /// Gets the time data was last receieved ArTime getLastReadingTime(void) { return myLastReading; } /// Gets the number of laser readings received in the last second AREXPORT int getReadingCount(void); /// Sets the device connection AREXPORT virtual void setDeviceConnection(ArDeviceConnection *conn); /// Gets the device connection AREXPORT virtual ArDeviceConnection *getDeviceConnection(void); /// Sets the position of the sensor on the robot AREXPORT void setSensorPosition(double x, double y, double th, double z = 0); /// Sets the position of the sensor on the robot AREXPORT void setSensorPosition(ArPose pose, double z = 0); /// Gets if the sensor pose has been set bool hasSensorPosition(void) { return myHaveSensorPose; } /// Gets the position of the sensor on the robot ArPose getSensorPosition(void) { return mySensorPose; } /// Gets the X position of the sensor on the robot double getSensorPositionX(void) { return mySensorPose.getX(); } /// Gets the Y position of the sensor on the robot double getSensorPositionY(void) { return mySensorPose.getY(); } /// Gets the Z position of the sensor on the robot (0 is unknown) double getSensorPositionZ(void) { return mySensorZ; } /// Gets the heading of the sensor on the robot double getSensorPositionTh(void) { return mySensorPose.getTh(); } /// Gets the number of the laser this is int getLaserNumber(void) { return myLaserNumber; } /// Sets the log level that informational things are logged at void setInfoLogLevel(ArLog::LogLevel infoLogLevel) { myInfoLogLevel = infoLogLevel; } /// Gets the log level that informational things are logged at ArLog::LogLevel getInfoLogLevel(void) { return myInfoLogLevel; } /// Cumulative readings that are this close to current beams are discarded void setCumulativeCleanDist(double dist) { myCumulativeCleanDist = dist; myCumulativeCleanDistSquared = dist * dist; } /// Cumulative readings that are this close to current beams are discarded double getCumulativeCleanDist(void) { return myCumulativeCleanDist; } /// Cumulative readings are cleaned every this number of milliseconds void setCumulativeCleanInterval(int milliSeconds) { myCumulativeCleanInterval = milliSeconds; } /// Cumulative readings are cleaned every this number of milliseconds int getCumulativeCleanInterval(void) { return myCumulativeCleanInterval; } /// Offset for cumulative cleaning void setCumulativeCleanOffset(int milliSeconds) { myCumulativeCleanOffset = milliSeconds; } /// Gets the offset for cumulative cleaning int getCumulativeCleanOffset(void) { return myCumulativeCleanOffset; } /// Resets when the cumulative cleaning happened (so offset can help) void resetLastCumulativeCleanTime(void) { myCumulativeLastClean.setToNow(); myCumulativeLastClean.addMSec(myCumulativeCleanOffset); } /// Adds a series of degree at which to ignore readings (within 1 degree of nearest integer) AREXPORT bool addIgnoreReadings(const char *ignoreReadings); /// Adds a degree at which to ignore readings (within 1 degree of nearest integer) void addIgnoreReading(double ignoreReading) { myIgnoreReadings.insert(ArMath::roundInt(ignoreReading)); } /// Clears the degrees we ignore readings at void clearIgnoreReadings(void) { myIgnoreReadings.clear(); } /// Gets the list of readings that we ignore const std::set *getIgnoreReadings(void) const { return &myIgnoreReadings; } /// Gets if the laser is flipped or not bool getFlipped(void) { return myFlipped; } /// Sets if the laser is flipped or not bool setFlipped(bool flipped) { myFlipped = flipped; return true; } /// Gets the default TCP port for the laser int getDefaultTcpPort(void) { return myDefaultTcpPort; } /// Gets the default port type for the laser const char *getDefaultPortType(void) { return myDefaultPortType.c_str(); } /// Sees if this class can set the degrees with doubles or not /** Gets if this class can set the start and end degrees with doubles. If so, you can use getStartDegreesMin and getStartDegreesMax to see the valid values that you can use with setStartDegrees (and see what was set with getStartDegrees), and getEndDegreesMin and getEndDegreesMax to see the valid values that you can use with setEndDegrees (and see what was set with getEndDegrees). **/ bool canSetDegrees(void) { return myCanSetDegrees; } /// Gets the minimum value for the start angle /** @see canSetDegrees **/ double getStartDegreesMin(void) { return myStartDegreesMin; } /// Gets the maximum value for the start angle /** @see canSetDegrees **/ double getStartDegreesMax(void) { return myStartDegreesMax; } /// Gets the start angle /** @see canSetDegrees **/ double getStartDegrees(void) { return myStartDegrees; } /// Sets the start angle, it must be between getStartDegreesMin and getStartDegreesMax /** @see canSetDegrees **/ AREXPORT bool setStartDegrees(double startDegrees); /// Gets the minimum value for the end angle /** @see canSetDegrees **/ double getEndDegreesMin(void) { return myEndDegreesMin; } /// Gets the maximum value for the end angle /** @see canSetDegrees **/ double getEndDegreesMax(void) { return myEndDegreesMax; } /// Gets the end angle /** @see canSetDegrees **/ double getEndDegrees(void) { return myEndDegrees; } /// Sets the end angle, it must be between getEndDegreesMin and getEndDegreesMax /** @see canSetDegrees **/ AREXPORT bool setEndDegrees(double endDegrees); /** Gets if you can choose the number of degrees If so, you can call chooseDegrees with one of the strings from getDegreesChoices, and get the degrees chosen as a string with getDegreesChoice or get the degrees chosen as a double with getDegreesChoiceDouble. **/ bool canChooseDegrees(void) { return myCanChooseDegrees; } /// Gets the list of range choices /** @see canChooseDegrees **/ std::list getDegreesChoices(void) { return myDegreesChoicesList; } /// Gets a string with the list of degrees choices seperated by |s /** @see canChooseDegrees **/ const char *getDegreesChoicesString(void) { return myDegreesChoicesString.c_str(); } /// Sets the range to one of the choices from getDegreesChoices /** @see canChooseDegrees **/ AREXPORT bool chooseDegrees(const char *range); /// Gets the range that was chosen /** @see canChooseDegrees **/ const char *getDegreesChoice(void) { return myDegreesChoice.c_str(); } /// Gets the range that was chosen as a double /** @see canChooseDegrees **/ double getDegreesChoiceDouble(void) { return myDegreesChoiceDouble; } /// Gets the map of degrees choices to what they mean /** This is mostly for the simulated laser @see canChooseDegrees @internal **/ std::map getDegreesChoicesMap(void) { return myDegreesChoices; } /** Gets if you can set an increment **/ bool canSetIncrement(void) { return myCanSetIncrement; } /// Gets the increment minimum /** @see canSetIncrement **/ double getIncrementMin(void) { return myIncrementMin; } /// Gets the increment maximum /** @see canSetIncrement **/ double getIncrementMax(void) { return myIncrementMax; } /// Gets the increment /** @see canSetIncrement **/ double getIncrement(void) { return myIncrement; } /// Sets the increment /** @see canSetIncrement **/ AREXPORT bool setIncrement(double increment); /** Gets if you can choose an increment. If so, call chooseIncrement with one of the choices in getIncrementChoices, and get the choice as a string with getIncrementChoice or the choice as a string with getIncrementChoiceDouble. **/ bool canChooseIncrement(void) { return myCanChooseIncrement; } /// Gets the list of increment choices /** @see canChooseIncrement **/ std::list getIncrementChoices(void) { return myIncrementChoicesList; } /// Gets a string with the list of increment choices seperated by |s /** @see canChooseIncrement **/ const char *getIncrementChoicesString(void) { return myIncrementChoicesString.c_str(); } /// Sets the increment to one of the choices from getIncrementChoices /** @see canChooseIncrement **/ AREXPORT bool chooseIncrement(const char *increment); /// Gets the increment that was chosen /** @see canChooseIncrement **/ const char *getIncrementChoice(void) { return myIncrementChoice.c_str(); } /// Gets the increment that was chosen as a double /** @see canChooseIncrement **/ double getIncrementChoiceDouble(void) { return myIncrementChoiceDouble; } /// Gets the map of increment choices to what they mean /** This is mostly for the simulated laser @see canChooseIncrement @internal **/ std::map getIncrementChoicesMap(void) { return myIncrementChoices; } /** Gets if you can choose units for the laser. If so, call chooseUnits with one of the choices in getUnitsChoices, and see what the choice was with getUnitsChoice. **/ bool canChooseUnits(void) { return myCanChooseUnits; } /// Gets the list of units choices /** @see canChooseUnits **/ std::list getUnitsChoices(void) { return myUnitsChoices; } /// Gets a string with the list of units choices seperated by |s /** @see canChooseUnits **/ const char *getUnitsChoicesString(void) { return myUnitsChoicesString.c_str(); } /// Sets the units to one of the choices from getUnitsChoices /** @see canChooseUnits **/ AREXPORT bool chooseUnits(const char *units); /// Gets the units that was chosen /** @see canChooseUnits **/ const char *getUnitsChoice(void) { return myUnitsChoice.c_str(); } /** Gets if you can choose reflectorBits for the laser. If so, call chooseReflectorBits with one of the choices in getReflectorBitsChoices, and see what the choice was with getReflectorBitsChoice. **/ bool canChooseReflectorBits(void) { return myCanChooseReflectorBits; } /// Gets the list of reflectorBits choices /** @see canChooseReflectorBits **/ std::list getReflectorBitsChoices(void) { return myReflectorBitsChoices; } /// Gets a string with the list of reflectorBits choices seperated by |s /** @see canChooseReflectorBits **/ const char *getReflectorBitsChoicesString(void) { return myReflectorBitsChoicesString.c_str(); } /// Sets the reflectorBits to one of the choices from getReflectorBitsChoices /** @see canChooseReflectorBits **/ AREXPORT bool chooseReflectorBits(const char *reflectorBits); /// Gets the reflectorBits that was chosen /** @see canChooseReflectorBits **/ const char *getReflectorBitsChoice(void) { return myReflectorBitsChoice.c_str(); } /** Gets if you can set powerControlled for the laser. If so, call setPowerControlled to set if the power is being controlled or not, and see what the setting is with getPowerControlled. **/ bool canSetPowerControlled(void) { return myCanSetPowerControlled; } /// Sets if the power is controlled /** @see canChoosePowerControlled **/ AREXPORT bool setPowerControlled(bool powerControlled); /// Gets if the power is controlled /** @see canChoosePowerControlled **/ bool getPowerControlled(void) { return myPowerControlled; } /** Gets if you can choose startingBaud for the laser. If so, call chooseStartingBaud with one of the choices in getStartingBaudChoices, and see what the choice was with getStartingBaudChoice. **/ bool canChooseStartingBaud(void) { return myCanChooseStartingBaud; } /// Gets the list of reflectorBits choices /** @see canChooseStartingBaud **/ std::list getStartingBaudChoices(void) { return myStartingBaudChoices; } /// Gets a string with the list of reflectorBits choices seperated by |s /** @see canChooseStartingBaud **/ const char *getStartingBaudChoicesString(void) { return myStartingBaudChoicesString.c_str(); } /// Sets the reflectorBits to one of the choices from getStartingBaudChoices /** @see canChooseStartingBaud **/ AREXPORT bool chooseStartingBaud(const char *reflectorBits); /// Gets the reflectorBits that was chosen /** @see canChooseStartingBaud **/ const char *getStartingBaudChoice(void) { return myStartingBaudChoice.c_str(); } /** Gets if you can choose autoBaud for the laser. If so, call chooseAutoBaud with one of the choices in getAutoBaudChoices, and see what the choice was with getAutoBaudChoice. **/ bool canChooseAutoBaud(void) { return myCanChooseAutoBaud; } /// Gets the list of reflectorBits choices /** @see canChooseAutoBaud **/ std::list getAutoBaudChoices(void) { return myAutoBaudChoices; } /// Gets a string with the list of reflectorBits choices seperated by |s /** @see canChooseAutoBaud **/ const char *getAutoBaudChoicesString(void) { return myAutoBaudChoicesString.c_str(); } /// Sets the reflectorBits to one of the choices from getAutoBaudChoices /** @see canChooseAutoBaud **/ AREXPORT bool chooseAutoBaud(const char *reflectorBits); /// Gets the reflectorBits that was chosen /** @see canChooseAutoBaud **/ const char *getAutoBaudChoice(void) { return myAutoBaudChoice.c_str(); } /// Adds a connect callback void addConnectCB(ArFunctor *functor, int position = 50) { myConnectCBList.addCallback(functor, position); } /// Adds a disconnect callback void remConnectCB(ArFunctor *functor) { myConnectCBList.remCallback(functor); } /// Adds a callback for when a connection to the robot is failed void addFailedConnectCB(ArFunctor *functor, int position = 50) { myFailedConnectCBList.addCallback(functor, position); } /// Removes a callback for when a connection to the robot is failed void remFailedConnectCB(ArFunctor *functor) { myFailedConnectCBList.remCallback(functor); } /// Adds a callback for when disconnect is called while connected void addDisconnectNormallyCB(ArFunctor *functor, int position = 50) { myDisconnectNormallyCBList.addCallback(functor, position); } /// Removes a callback for when disconnect is called while connected void remDisconnectNormallyCB(ArFunctor *functor) { myDisconnectNormallyCBList.remCallback(functor); } /// Adds a callback for when disconnection happens because of an error void addDisconnectOnErrorCB(ArFunctor *functor, int position = 50) { myDisconnectOnErrorCBList.addCallback(functor, position); } /// Removes a callback for when disconnection happens because of an error void remDisconnectOnErrorCB(ArFunctor *functor) { myDisconnectOnErrorCBList.remCallback(functor); } /// Adds a callback that is called whenever a laser reading is processed void addReadingCB(ArFunctor *functor, int position = 50) { myDataCBList.addCallback(functor, position); } /// Removes a callback that is called whenever a laser reading is processed void remReadingCB(ArFunctor *functor) { myDataCBList.remCallback(functor); } /// Gets the absolute maximum range on the sensor unsigned int getAbsoluteMaxRange(void) { return myAbsoluteMaxRange; } /// Copies the reading count stuff from another laser (for the laser filter) AREXPORT void copyReadingCount(const ArLaser* laser); /// override the default to bound the maxrange by the absolute max range AREXPORT virtual void setMaxRange(unsigned int maxRange); /// override the default to keep track of its been set or not AREXPORT virtual void setCumulativeBufferSize(size_t size); /// Call the laser can implement to make sure the parameters /// are all okay or set the maximum range (based on the params) /** The base laser should make sure all the parameters make sense according to what was set up as allowed. This is here for two purposes. The first is to check for parameters that aren't valid because of something the base class can't check for. The second is to recalculate whatever the maximum range of the sensor is based on those settings, and call setAbsoluteMaxRange if the maximum range has changed based on the settings. This is strictly an internal call, mostly for the simulated laser so that it can more closely match the real laser on complicated things like the LMS2xx where the settings for the units and bits affect what the maximum range is. @internal **/ AREXPORT virtual bool laserCheckParams(void) { return true; } /// Applies a transform to the buffers AREXPORT virtual void applyTransform(ArTransform trans, bool doCumulative = true); /// Makes it so we'll apply simple naming to all the lasers AREXPORT static void useSimpleNamingForAllLasers(void); protected: /// Converts the raw readings into the buffers (needs to be called /// by subclasses) AREXPORT void laserProcessReadings(void); /// Returns if the laser has lost connection so that the subclass /// can do something appropriate AREXPORT bool laserCheckLostConnection(void); /// Pulls the unset params from the robot parameter file AREXPORT bool laserPullUnsetParamsFromRobot(void); /// Allows setting the degrees the laser uses to anything in a range AREXPORT void laserAllowSetDegrees(double defaultStartDegrees, double startDegreesMin, double startDegreesMax, double defaultEndDegrees, double endDegreesMin, double endDegreesMax); /// Allows setting the degrees the laser uses to one of a number of choices AREXPORT void laserAllowDegreesChoices(const char *defaultDegreesChoice, std::map degreesChoices); /// Allows setting the increment the laser uses to anything in a range AREXPORT void laserAllowSetIncrement( double defaultIncrement, double incrementMin, double incrementMax); /// Allows setting the increment to one of a number of choices AREXPORT void laserAllowIncrementChoices(const char *defaultIncrementChoice, std::map incrementChoices); /// Allows setting the units the laser will use to one of a number of choices AREXPORT void laserAllowUnitsChoices(const char *defaultUnitsChoice, std::list unitsChoices); /// Allows setting the reflector bits the laser will use to one of a /// number of choices AREXPORT void laserAllowReflectorBitsChoices( const char *defaultReflectorBitsChoice, std::list reflectorBitsChoices); /// Allows setting if the power is controlled or not AREXPORT void laserAllowSetPowerControlled(bool defaultPowerControlled); /// Allows setting the starting baud to one of a number of choices AREXPORT void laserAllowStartingBaudChoices( const char *defaultStartingBaudChoice, std::list startingBaudChoices); /// Allows setting the auto baud speed to one of a number of choices AREXPORT void laserAllowAutoBaudChoices( const char *defaultAutoBaudChoice, std::list autoBaudChoices); /// Called when the lasers name is set AREXPORT virtual void laserSetName(const char *name); /// Sets the laser's default TCP port AREXPORT void laserSetDefaultTcpPort(int defaultLaserTcpPort); /// Sets the laser's default connection port type AREXPORT void laserSetDefaultPortType(const char *defaultPortType); /// Sets the absolute maximum range on the sensor AREXPORT void laserSetAbsoluteMaxRange(unsigned int absoluteMaxRange); /// Function for a laser to call when it connects AREXPORT virtual void laserConnect(void); /// Function for a laser to call when it fails to connects AREXPORT virtual void laserFailedConnect(void); /// Function for a laser to call when it disconnects normally AREXPORT virtual void laserDisconnectNormally(void); /// Function for a laser to call when it loses connection AREXPORT virtual void laserDisconnectOnError(void); // processes the individual reading, helper for base class AREXPORT void internalProcessReading(double x, double y, unsigned int range, bool clean, bool onlyClean); // internal helper function for seeing if the choice matches AREXPORT bool internalCheckChoice(const char *check, const char *choice, std::list *choices, const char *choicesStr); // internal helper function for seeing if the choice matches AREXPORT bool internalCheckChoice(const char *check, const char *choice, std::map *choices, const char *choicesStr, double *choiceDouble); // internal helper function for building a string for a list of chocies void internalBuildChoicesString(std::list *choices, std::string *str); // internal helper function for building a string for a list of chocies void internalBuildChoices(std::map *choices, std::string *str, std::list *choicesList); // Function called in laserProcessReadings to indicate that a // reading was received AREXPORT virtual void internalGotReading(void); int myLaserNumber; ArDeviceConnection *myConn; ArMutex myConnMutex; double myTimeoutSeconds; ArPose mySensorPose; double mySensorZ; bool myHaveSensorPose; double myCumulativeCleanDist; double myCumulativeCleanDistSquared; int myCumulativeCleanInterval; int myCumulativeCleanOffset; ArTime myCumulativeLastClean; std::set myIgnoreReadings; unsigned int myAbsoluteMaxRange; bool myMaxRangeSet; bool myCumulativeBufferSizeSet; bool myFlippedSet; bool myFlipped; bool myCanSetDegrees; double myStartDegreesMin; double myStartDegreesMax; bool myStartDegreesSet; double myStartDegrees; double myEndDegreesMin; double myEndDegreesMax; bool myEndDegreesSet; double myEndDegrees; bool myCanChooseDegrees; std::map myDegreesChoices; std::list myDegreesChoicesList; bool myDegreesChoiceSet; std::string myDegreesChoicesString; std::string myDegreesChoice; double myDegreesChoiceDouble; bool myCanSetIncrement; double myIncrementMin; double myIncrementMax; bool myIncrementSet; double myIncrement; bool myCanChooseIncrement; std::map myIncrementChoices; std::list myIncrementChoicesList; std::string myIncrementChoicesString; bool myIncrementChoiceSet; std::string myIncrementChoice; double myIncrementChoiceDouble; bool myCanChooseUnits; std::list myUnitsChoices; std::string myUnitsChoicesString; bool myUnitsChoiceSet; std::string myUnitsChoice; bool myCanChooseReflectorBits; std::list myReflectorBitsChoices; std::string myReflectorBitsChoicesString; bool myReflectorBitsChoiceSet; std::string myReflectorBitsChoice; bool myCanSetPowerControlled; bool myPowerControlledSet; bool myPowerControlled; bool myCanChooseStartingBaud; std::list myStartingBaudChoices; std::string myStartingBaudChoicesString; bool myStartingBaudChoiceSet; std::string myStartingBaudChoice; bool myCanChooseAutoBaud; std::list myAutoBaudChoices; std::string myAutoBaudChoicesString; bool myAutoBaudChoiceSet; std::string myAutoBaudChoice; int myDefaultTcpPort; std::string myDefaultPortType; ArCallbackList myConnectCBList; ArCallbackList myFailedConnectCBList; ArCallbackList myDisconnectOnErrorCBList; ArCallbackList myDisconnectNormallyCBList; ArCallbackList myDataCBList; ArLog::LogLevel myInfoLogLevel; ArTime myLastReading; // packet count time_t myTimeLastReading; int myReadingCurrentCount; int myReadingCount; bool myRobotRunningAndConnected; static bool ourUseSimpleNaming; }; #endif // ARRANGEDEVICELASER_H