/* Adept MobileRobots Robotics Interface for Applications (ARIA) Copyright (C) 2004, 2005 ActivMedia Robotics LLC Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc. Copyright (C) 2011, 2012, 2013 Adept Technology This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA If you wish to redistribute ARIA under different terms, contact Adept MobileRobots for information about a commercial version of ARIA at robots@mobilerobots.com or Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960 */ #ifndef ARPIXELDEVICE_H #define ARPIXELDEVICE_H #include #include "Aria.h" /*! @class ArPixelDevice. @brief Holds data from a sensor that provides data arranged in a 2d array. Subclasses are used for specific sensor implementations, such as the ArFocusPixelDevice for the Focus Robotics nDepth stereocamera. The data are arranged in an x,y grid, with the origin being in the upper left corner, from the perspective of the robot. It's in a row-major format. The Field of View (FOV) is assumed to be centered with zero being the center of the area, such that the permitted x angles are between ((-x_fov/2) to (+x_fov/2)) and ((-y_fov/2) to (+y_fov/2)). Negative angles are to the lower left of the grid from the perspective of the robot. @param x_size dimension of data grid in x direction @param y_size dimension of data grid in y direction @param x_fov Field of View of sensor in X direction (angle in degrees) @param y_fov Field of View of sensor in Y direction (angle in degrees) @param name the name of this device */ template class ArPixelDevice { public: /// Base Constructor AREXPORT ArPixelDevice(int x_size, int y_size, double x_fov, double y_fov, const char *name) { myDeviceMutex.setLogName("ArPixelDevice::myDeviceMutex"); myXSize = x_size; myYSize = y_size; myXFOV = x_fov; myYFOV = y_fov; myName = name; mySensorData = NULL; if (!allocateSensorDataMemory()) { ArLog::log(ArLog::Terse, "Failed to allocate memory for ArPixelDevice %s", getName()); } else { ArLog::log(ArLog::Verbose, "Allocated memory for ArPixelDevice %s", getName()); } if (!allocateSensorXYZMemory()) { ArLog::log(ArLog::Terse, "Failed to allocate XYZ memory for ArPixelDevice %s", getName()); } else { ArLog::log(ArLog::Verbose, "Allocated XYZ memory for ArPixelDevice %s", getName()); } } /// Base destructor AREXPORT virtual ~ArPixelDevice() { if (mySensorData != NULL) { for (int i=0; i < myXSize; i++) { for (int j=0; j < myYSize; j++) { delete mySensorData[i][j]; } delete [] (mySensorData[i]); } delete [] (mySensorData); } if (mySensorXYZ != NULL) { for (int i=0; i < myXSize; i++) { for (int j=0; j < myYSize; j++) { delete [] mySensorXYZ[i][j]; } delete [] (mySensorXYZ[i]); } delete [] (mySensorXYZ); } } /// Get the value of the sensor at the (x,y) coords DataObject *getSensorData(int x, int y) { if ((x >= 0) && (x < myXSize) && (y >= 0) && (y < myYSize)) { return mySensorData[x][y]; } else { return NULL; } } /// Get the xyz array of the sensor at the (x,y) pizels. DataObject* getSensorXYZ(int x, int y) { if ((x >= 0) && (x < myXSize) && (y >= 0) && (y < myYSize)) { return mySensorXYZ[x][y]; } else { return NULL; } } /// Get the dimension of the grid in the x direction int getXDimension(void) { return myXSize; } /// Get the dimension of the grid in the y direction int getYDimension(void) { return myYSize; } /// Get the X direction Field of View, in degrees double getXFOV(void) { return myXFOV; } /// Get the Y direction Field of View, in degrees double getYFOV(void) { return myYFOV; } /// Get the name of the device const char *getName(void) { return myName.c_str(); } /// Gets the raw sensor data DataObject ***getRawSensorData(void) { return mySensorData; } /// Gets the raw XYZ data DataObject ***getRawSensorXYZ(void) { return mySensorXYZ; } /// Lock this device AREXPORT virtual int lockDevice() { return(myDeviceMutex.lock()); } /// Try to lock this device AREXPORT virtual int tryLockDevice() { return(myDeviceMutex.tryLock()); } /// Unlock this device AREXPORT virtual int unlockDevice() { return(myDeviceMutex.unlock()); } protected: std::string myName; int myXSize; int myYSize; double myXFOV; double myYFOV; DataObject ***mySensorData; DataObject ***mySensorXYZ; ArMutex myDeviceMutex; bool allocateSensorDataMemory() { if ((myXSize < 1) || (myYSize < 1)) { ArLog::log(ArLog::Normal, "Bad array size for ArPixelDevice %s", getName()); return false; } mySensorData = new DataObject**[myXSize]; if (mySensorData == NULL) { ArLog::log(ArLog::Normal, "Cannot allocate memory for ArPixelDevice %s", getName()); return false; } for (int i = 0; i < myXSize; i++) { if ((mySensorData[i] = new DataObject*[myYSize]) == NULL) { ArLog::log(ArLog::Normal, "Cannot allocate memory for ArPixelDevice %s", getName()); return false; } for (int j = 0; j < myYSize; j++) { mySensorData[i][j] = new DataObject; } } return true; } bool allocateSensorXYZMemory() { if ((myXSize < 1) || (myYSize < 1)) { ArLog::log(ArLog::Normal, "Bad array size for ArPixelDevice %s", getName()); return false; } mySensorXYZ = new DataObject**[myXSize]; if (mySensorXYZ == NULL) { ArLog::log(ArLog::Normal, "Cannot allocate memory for ArPixelDevice %s", getName()); return false; } for (int i = 0; i < myXSize; i++) { if ((mySensorXYZ[i] = new DataObject*[myYSize]) == NULL) { ArLog::log(ArLog::Normal, "Cannot allocate memory for ArPixelDevice %s", getName()); return false; } for (int j = 0; j < myYSize; j++) { mySensorXYZ[i][j] = new DataObject[3]; } } return true; } }; #endif // ARPIXELDEVICE_H