/* Adept MobileRobots Robotics Interface for Applications (ARIA) Copyright (C) 2004, 2005 ActivMedia Robotics LLC Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc. Copyright (C) 2011, 2012, 2013 Adept Technology This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA If you wish to redistribute ARIA under different terms, contact Adept MobileRobots for information about a commercial version of ARIA at robots@mobilerobots.com or Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960 */ // Includes #include "Aria.h" // A class that just wraps the robot so that people don't forget // to unlock and lock the robot when using direct motion commands class ArDirectMotion { public: // Constructor ArDirectMotion(ArRobot *robot) {myRobot = robot;} // Destructor ~ArDirectMotion() {} // Wait until the turn times out or has been completed // within the required range in degrees void finishTurn(double timeOut, double withinDeg) { ArTime start; while (1) { myRobot->lock(); if (myRobot->isHeadingDone(withinDeg)) { printf("Finished turn\n"); myRobot->unlock(); break; } if (start.mSecSince() > timeOut) { printf("Turn timed out\n"); myRobot->unlock(); break; } myRobot->unlock(); } } // Wait until the move times out or has been completed // within the required range in mm void finishMove(double timeOut, double withinDist) { ArTime start; while (1) { myRobot->lock(); if (myRobot->isMoveDone(withinDist)) { printf("Finished move\n"); myRobot->unlock(); break; } if (start.mSecSince() > timeOut) { printf("Turn timed out\n"); myRobot->unlock(); break; } myRobot->unlock(); } } // Move a distance if that distance + the buffer space // is clear, otherwise do nothing void move(double distance, double bufferSpace) { myRobot->lock(); if(myRobot->checkRangeDevicesCurrentBox(0, -myRobot->getRobotRadius(), distance + bufferSpace, myRobot->getRobotRadius()) >= distance + myRobot->getRobotRadius() + bufferSpace) { myRobot->move(distance); } myRobot->unlock(); } // Change heading by void setDeltaHeading(double heading) { myRobot->lock(); myRobot->setDeltaHeading(heading); myRobot->unlock(); } // Set to absolute heading void setHeading(double degree) { myRobot->lock(); myRobot->setHeading(degree); myRobot->unlock(); } // Set the maximum translational velocity void setTransVelMax(double max) { myRobot->lock(); myRobot->setTransVelMax(max); myRobot->unlock(); } // Set the translational acceleration void setTransAccel(double acc) { myRobot->lock(); myRobot->setTransAccel(acc); myRobot->unlock(); } // Set the translational deceleration void setTransDecel(double decel) { myRobot->lock(); myRobot->setTransDecel(decel); myRobot->unlock(); } // Set the rotational acceleration void setRotAccel(double acc) { myRobot->lock(); myRobot->setRotAccel(acc); myRobot->unlock(); } // Set the rotational deceleration void setRotDecel(double decel) { myRobot->lock(); myRobot->setRotDecel(decel); myRobot->unlock(); } // Set the maximum rotational velocity void setRotVelMax(double max) { myRobot->lock(); myRobot->setRotVelMax(max); myRobot->unlock(); } // Set the rotational velocity void setRotVel(double velocity) { myRobot->lock(); myRobot->setRotVel(velocity); myRobot->unlock(); } // Set the translational veocity void setVel(double velocity) { myRobot->lock(); myRobot->setVel(velocity); myRobot->unlock(); } // Set the velocities of each wheel void setVel2(double left, double right) { myRobot->lock(); myRobot->setVel2(left, right); myRobot->unlock(); } // Stop the wheels void stop() { myRobot->lock(); myRobot->stop(); myRobot->unlock(); } protected: ArRobot *myRobot; }; int main(int argc, char** argv) { // To simply connect ArSimpleConnector simpleConnector(&argc, argv); // The robot ArRobot robot; // The key handler ArKeyHandler keyHandler; // Sonar ArSonarDevice sonarDev; // Laser //ArSick laserDev; //Direct Motion Commands ArDirectMotion motion(&robot); // Parse the arguments from the simple connector simpleConnector.parseArgs(); // Some arguments did not parse.... // The program fails to understand and shuts down. if (argc > 1) { simpleConnector.logOptions(); keyHandler.restore(); exit(1); } // Initialize Aria Aria::init(); // Give Aria the key handler Aria::setKeyHandler(&keyHandler); // Attach the key handler to the robot robot.attachKeyHandler(&keyHandler); // Add the sonar to the robot robot.addRangeDevice(&sonarDev); // Add the laser (if we have it) to the robot //robot.addRangeDevice(&laserDev); // Connect to the robot if (!simpleConnector.connectRobot(&robot)) { printf("Could not connect to robot... exiting\n"); Aria::shutdown(); keyHandler.restore(); return 1; } // Run the robot in its own thread robot.runAsync(false); //simpleConnector.setupLaser(&laserDev); //laserDev.runAsync(); /* if (!laserDev.blockingConnect()) { printf("Could not connect to SICK laser... exiting\n"); Aria::shutdown(); return 1; } */ // turn on the motors robot.comInt(ArCommands::ENABLE, 1); robot.comInt(ArCommands::JOYDRIVE, 1); //---------------------------------------------------------------- // The robot's settings for this run (feel free to change these) //---------------------------------------------------------------- // Set the Robot's PIDs robot.comInt(82, 50); // rotkp robot.comInt(83, 300); // rotkv robot.comInt(84, 10); // rotki robot.comInt(85, 25); // transkp robot.comInt(86, 600); // transkv robot.comInt(87, 10); // transki // Set the robot's velocities and accelerations motion.setTransVelMax(2999); motion.setRotVelMax(2999); motion.setTransAccel(2999); motion.setTransDecel(2999); motion.setRotAccel(2999); motion.setRotDecel(2999); //---------------------------------------------------------------- // The robot's test pattern for this run (feel free to change this) //---------------------------------------------------------------- // The test pattern described below printf("Executing random test pattern\n"); // Some constants for this run const double TIMOUT_TIME = 5000; // Time(msec) before a movement times out const double WITHIN_DIST = 50; // If within this(mm) of target, good enough const double WITHIN_DEG = 10; // If within this(deg) of target, good enough const double SPACE_BUFFER = 600; // Extra space to give robot // Distances and angles for pattern double distance = 100; double angle = 30; /* A figure 8 test pattern // The initial move motion.move(distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); while(robot.isRunning()) { // Turn right if(!robot.isRunning())break; motion.setDeltaHeading(-angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); // Move forward if(!robot.isRunning())break; motion.move(distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); // Turn right if(!robot.isRunning())break; motion.setDeltaHeading(-angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); // Move forward if(!robot.isRunning())break; motion.move(distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); // Turn right if(!robot.isRunning())break; motion.setDeltaHeading(-angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); // Move forward if(!robot.isRunning())break; motion.move(2 * distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); // Turn left if(!robot.isRunning())break; motion.setDeltaHeading(angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); // Move forward if(!robot.isRunning())break; motion.move(distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); // Turn left if(!robot.isRunning())break; motion.setDeltaHeading(angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); // Move forward if(!robot.isRunning())break; motion.move(distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); // Turn left if(!robot.isRunning())break; motion.setDeltaHeading(angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); // Move forward if(!robot.isRunning())break; motion.move(2 * distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); } */ while(robot.isRunning()) { double randomNumber = rand(); int choice = (int)randomNumber % 3; switch(choice) { case 0: // Turn right motion.setDeltaHeading(-angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); break; case 1: // Turn left motion.setDeltaHeading(angle); motion.finishTurn(TIMOUT_TIME, WITHIN_DEG); break; case 2: // Move forward motion.move(distance, SPACE_BUFFER); motion.finishMove(TIMOUT_TIME, WITHIN_DIST); default: motion.stop(); break; } } // now exit Aria::shutdown(); return 0; }