600 lines
24 KiB
C++
600 lines
24 KiB
C++
/*
|
|
Adept MobileRobots Robotics Interface for Applications (ARIA)
|
|
Copyright (C) 2004, 2005 ActivMedia Robotics LLC
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc.
|
|
Copyright (C) 2011, 2012, 2013 Adept Technology
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
If you wish to redistribute ARIA under different terms, contact
|
|
Adept MobileRobots for information about a commercial version of ARIA at
|
|
robots@mobilerobots.com or
|
|
Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960
|
|
*/
|
|
#ifndef ARVCC4_H
|
|
#define ARVCC4_H
|
|
|
|
#include "ariaTypedefs.h"
|
|
#include "ArBasePacket.h"
|
|
#include "ArPTZ.h"
|
|
#include "ariaUtil.h"
|
|
#include "ArCommands.h"
|
|
#include "ArSerialConnection.h"
|
|
|
|
// maximum number of bytes expected for a response from the camera
|
|
#define MAX_RESPONSE_BYTES 14
|
|
|
|
// the state timeout when using bidirectional communication
|
|
// This is big because it may have to wait for a power on or
|
|
// power off command to complete, which take ~4 seconds.
|
|
#define BIDIRECTIONAL_TIMEOUT 5000
|
|
|
|
// The number of ms to wait for a timeout for unidirectional communication.
|
|
// This is how long the usertask will wait before assuming that the camera
|
|
// has processed the last command.
|
|
#define UNIDIRECTIONAL_TIMEOUT 300
|
|
|
|
// how often to request position information from the camera if using
|
|
// bidirectional communication (in ms)
|
|
#define AUTO_UPDATE_TIME 2000
|
|
|
|
// accuracy of camera movements. This sets how different the current
|
|
// position and the desired position must be in order for a command to be
|
|
// sent to the camera.
|
|
#define TOLERANCE .1
|
|
|
|
/** @class ArVCC4
|
|
* Control the pan, tilt, and zoom mechanisms of the Canon VC-C4 and VC-C50i cameras.
|
|
*
|
|
* An ArVCC4 object can be used to control the pan, tilt, zoom and some
|
|
* other aspects of the Canon VC-C4 camera. Since the camera is
|
|
* typically connected to the robot microcontroller's auxilliary serial
|
|
* port, and also uses ArRobot task cycle callbacks, a connected and
|
|
* running ArRobot object is required.
|
|
*
|
|
* Communication with the camera can operate in two modes or directions.
|
|
* In unidirectional mode(COMM_UNIDIRECTIONAL),
|
|
* ArVCC4 simply sends commands to the camera, and waits for
|
|
* some time to allow the camera to process it. However, it will have
|
|
* no way of verifying that a command was successfully received by the
|
|
* cameral. In bidirectional mode (COMM_BIDIRECTIONAL), ArVCC4 waits for a
|
|
* response from the camera. Bidirectinal mode requires that the CTS
|
|
* line (pin 2 on the VISCA port) be connected.
|
|
* When you create an ArVCC4 object, you can request a specific mode,
|
|
* or you can specify COMM_UNKNOWN, and ArVCC4 will switch into
|
|
* bidirectional mode if it receives any responses from the camera.
|
|
*
|
|
* Programmer's manuals for the VC-C45 and VC-C50i, detailing the
|
|
* communications protocol (including commands not implemented by ArVCC4),
|
|
* as well as user manuals containing specifications and hardware information,
|
|
* are available at <a href="http://robots.mobilerobots.com">http://robots.mobilerobots.com</a>.
|
|
* ArVCC4 sends commands to the camera using the ArVCC4Packet class to construct the command, and
|
|
* using either the ArRobot pointer or an internal ArDeviceConnection,
|
|
* depending on whether the camera is connected to the robot
|
|
* microcontroller's auxilliary serial port (the usual connection method for
|
|
* most robots) or a computer serial port.
|
|
*
|
|
|
|
\section VCC4CommandDetails Command-Response details:
|
|
|
|
This camera has a reponse mechanism, whereby each packet sent to the camera generates an answer within 300ms. For the most part, the answer consists of a 6-byte packet which has an error-status within it. Some commands generate longer packets. Receiving the error status is helpful in that you know that the camera will or will not execute the command. However, it doesn't tell you when the command is completed.
|
|
|
|
In order for the the reponses to work, the CTS line on the camera must be high. This is pin 2 on the visca port. If your camera is not wired in such a fashion, then no answers will be sent to the computer, and the computer will not know whether or not the last packet was processed correctly. Because of this, systems operating without the answer feature will need to run with delays between sending packets. Otherwise, packets will be ignored, but you will have no way of knowing that. To achieve this, there are two types of communication modes that this class will operate under - COMM_UNIDIRECTIONAL or COMM_BIDIRECTIONAL. The default is COMM_UNKNOWN, in which it will use bidirectional commuication if a response is received.
|
|
|
|
To handle the states and packet processing, this class runs as a user-task, different than the other pan/tilt devices. Because of this, it must have a valid robot connection and a valid serial connection if using a computer serial port. Note that the computer port must be set independently of this class. The aux port can be selected via setAuxPort from the ArPTZ class.
|
|
|
|
\section VCC4UnitConversions Unit Conversions:
|
|
|
|
The camera's pan and tilt commands work on a number of units equal to (degrees / 0.1125). The panTilt function always rounds the conversion closer to zero, so that a magnitude greater than the allowable range of movement is not sent to the camera.
|
|
|
|
|
|
\section VCC4C50iFeatures C50i features:
|
|
|
|
NEW - There is now limited support for the night-mode version of the C50i. To enable night-mode support, pass the camera type in with the constructor. Night-mode consists of two parts - a phsyical IR-cutoff filter, and IR LEDs. The cutoff filter must be enabled first, then turn on the IR LEDs.
|
|
|
|
This camera has a digital zoom as well as the optical one. There is an additional function for handling the digital. There is also limited support for the auto-focus mechanism, which may need to be elaborated on for better night-vision. In addition to the focus, there are also gain and backlight adjustments that can be made, but are not yet implemented in this class.
|
|
*/
|
|
|
|
/// Used by the ArVCC4 class
|
|
class ArVCC4Commands
|
|
{
|
|
public:
|
|
enum Command {
|
|
DELIM = 0x00, ///<Delimeter character
|
|
DEVICEID = 0x30, ///<Default device ID
|
|
PANSLEW = 0x50, ///<Sets the pan slew
|
|
TILTSLEW = 0x51, ///<Sets the tilt slew
|
|
STOP = 0x53, ///<Stops current pan/tilt motion
|
|
INIT = 0x58, ///<Initializes the camera
|
|
SLEWREQ = 0x59, ///<Request pan/tilt min/max slew
|
|
ANGLEREQ = 0x5c, ///<Request pan/tilt min/max angle
|
|
PANTILT = 0x62, ///<Pan/tilt command
|
|
SETRANGE = 0x64, ///<Pan/tilt min/max range assignment
|
|
PANTILTREQ = 0x63, ///<Request pan/tilt position
|
|
INFRARED = 0x76, ///<Controls operation of IR lighting
|
|
PRODUCTNAME = 0x87, ///<Requests the product name
|
|
LEDCONTROL = 0x8E, ///<Controls LED status
|
|
CONTROL = 0x90, ///<Puts camera in Control mode
|
|
POWER = 0xA0, ///<Turns on/off power
|
|
AUTOFOCUS = 0xA1, ///<Controls auto-focusing functions
|
|
ZOOMSTOP = 0xA2, ///<Stops zoom motion
|
|
GAIN = 0xA5, ///<Sets gain adjustment on camera
|
|
FOCUS = 0xB0, ///<Manual focus adjustment
|
|
ZOOM = 0xB3, ///<Zooms camera lens
|
|
ZOOMREQ = 0xB4, ///<Requests max zoom position
|
|
IRCUTFILTER = 0xB5, ///<Controls the IR cut filter
|
|
DIGITALZOOM = 0xB7, ///<Controls the digital zoom amount
|
|
FOOTER = 0xEF, ///<Packet Footer
|
|
RESPONSE = 0xFE, ///<Packet header for response
|
|
HEADER = 0xFF ///<Packet Header
|
|
};
|
|
|
|
};
|
|
|
|
/// Used by ArVCC4 to construct command packets
|
|
/**
|
|
There are only a few functioning ways to put things into this packet, you
|
|
MUST use thse, if you use anything else your commands won't work. You
|
|
must use only byteToBuf() and byte2ToBuf(), no other ArBasePacket methods.
|
|
*/
|
|
class ArVCC4Packet: public ArBasePacket
|
|
{
|
|
public:
|
|
/// Constructor
|
|
AREXPORT ArVCC4Packet(ArTypes::UByte2 bufferSize = 30);
|
|
/// Destructor
|
|
AREXPORT virtual ~ArVCC4Packet();
|
|
|
|
AREXPORT virtual void byte2ToBuf(ArTypes::Byte4 val);
|
|
|
|
AREXPORT virtual void finalizePacket(void);
|
|
|
|
protected:
|
|
};
|
|
|
|
class ArVCC4 : public ArPTZ
|
|
{
|
|
public:
|
|
// the states for communication
|
|
enum CommState {
|
|
COMM_UNKNOWN,
|
|
COMM_BIDIRECTIONAL,
|
|
COMM_UNIDIRECTIONAL
|
|
};
|
|
|
|
enum CameraType {
|
|
CAMERA_VCC4,
|
|
CAMERA_C50I
|
|
};
|
|
|
|
/// Constructor
|
|
AREXPORT ArVCC4(ArRobot *robot, bool inverted = false, CommState commDirection = COMM_UNKNOWN, bool autoUpdate = true, bool disableLED = false, CameraType cameraType = CAMERA_VCC4);
|
|
/// Destructor
|
|
AREXPORT virtual ~ArVCC4();
|
|
|
|
AREXPORT virtual bool power(bool state) { myPowerStateDesired = state; return true; }
|
|
AREXPORT bool getPower(void) { return myPowerState; }
|
|
AREXPORT virtual bool init(void) { myInitRequested = true; return true; }
|
|
AREXPORT virtual void reset(void) { ArPTZ::reset(); init(); }
|
|
AREXPORT virtual const char *getTypeName() { return "vcc4"; }
|
|
|
|
/// Returns true if the camera has been initialized
|
|
bool isInitted(void) { return myCameraIsInitted; }
|
|
AREXPORT virtual void connectHandler(void);
|
|
AREXPORT virtual bool packetHandler(ArBasePacket *packet);
|
|
|
|
protected:
|
|
virtual bool pan_i(double deg) { return panTilt_i(deg, myTiltDesired); }
|
|
virtual bool panRel_i(double deg) { return panTilt_i(myPanDesired + deg, myTiltDesired); }
|
|
virtual bool tilt_i(double deg) { return panTilt_i(myPanDesired, deg); }
|
|
virtual bool tiltRel_i(double deg) { return panTilt_i(myPanDesired, myTiltDesired + deg); }
|
|
virtual bool panTiltRel_i(double pdeg, double tdeg) { return panTilt_i(myPanDesired + pdeg, myTiltDesired + tdeg); }
|
|
|
|
public:
|
|
|
|
/*
|
|
AREXPORT virtual double getMaxPosPan(void) const
|
|
{ if (myInverted) return invert(MIN_PAN); else return MAX_PAN; }
|
|
AREXPORT virtual double getMaxNegPan(void) const
|
|
{ if (myInverted) return invert(MAX_PAN); else return MIN_PAN; }
|
|
AREXPORT virtual double getMaxPosTilt(void) const
|
|
{ if (myInverted) return invert(MIN_TILT); else return MAX_TILT; }
|
|
AREXPORT virtual double getMaxNegTilt(void) const
|
|
{ if (myInverted) return invert(MAX_TILT); else return MIN_TILT; }
|
|
*/
|
|
|
|
/// Requests that a packet be sent to the camera to retrieve what
|
|
/// the camera thinks are its pan/tilt positions. getPan() and getTilt()
|
|
/// will then return this information instead of your last requested values.
|
|
AREXPORT void getRealPanTilt(void) { myRealPanTiltRequested = true; }
|
|
|
|
/// Requests that a packet be sent to the camera to retrieve what
|
|
/// the camera thinks is its zoom position. getZoom()
|
|
/// will then return this information instead of your last requested value.
|
|
AREXPORT void getRealZoomPos(void) { myRealZoomRequested = true; }
|
|
|
|
AREXPORT virtual bool canZoom(void) const { return true; }
|
|
|
|
protected:
|
|
AREXPORT virtual bool panTilt_i(double pdeg, double tdeg);
|
|
|
|
public:
|
|
AREXPORT virtual bool zoom(int deg);
|
|
/// adjust the digital zoom amount. Has four states, takes 0-3 for:
|
|
/// 1x, 2x, 4x, 8x
|
|
AREXPORT bool digitalZoom(int deg);
|
|
|
|
/// Adds an error callback to a list of callbacks to be called when there
|
|
/// is a serious error in communicating - either the parameters were incorrect,
|
|
/// the mode was incorrect, or there was an unknown error.
|
|
AREXPORT void addErrorCB(ArFunctor *functor, ArListPos::Pos position);
|
|
|
|
/// Remove an error callback from the callback list
|
|
AREXPORT void remErrorCB(ArFunctor *functor);
|
|
|
|
/// Halts all pan-tilt movement
|
|
AREXPORT bool haltPanTilt(void) { myHaltPanTiltRequested = true; return true; }
|
|
/// Halts zoom movement
|
|
AREXPORT bool haltZoom(void) { myHaltZoomRequested = true; return true; }
|
|
|
|
/// Sets the rate that the unit pans at
|
|
AREXPORT bool panSlew(double deg) { myPanSlewDesired = deg; return true; }
|
|
/// Sets the rate the unit tilts at
|
|
AREXPORT bool tiltSlew(double deg) { myTiltSlewDesired = deg; return true; }
|
|
bool canSetPanTiltSlew() { return true; }
|
|
|
|
/// Adds device ID and delimeter to packet buffer
|
|
AREXPORT void preparePacket(ArVCC4Packet *packet);
|
|
|
|
protected:
|
|
AREXPORT virtual double getPan_i(void) const { return myPanDesired; }
|
|
AREXPORT virtual double getTilt_i(void) const { return myTiltDesired; }
|
|
|
|
public:
|
|
AREXPORT virtual int getZoom(void) const { return myZoomDesired; }
|
|
AREXPORT double getDigitalZoom(void) const { return myDigitalZoomDesired; }
|
|
|
|
AREXPORT virtual bool canGetRealPanTilt(void) const { return true; }
|
|
AREXPORT virtual bool canGetRealZoom(void) const { return true; }
|
|
AREXPORT virtual bool canSetFocus(void) const { return false; }
|
|
/// Set autofocus mode:
|
|
/// 0 = Autofocus, 1 = manual focus
|
|
AREXPORT virtual bool autoFocus(void) { myFocusModeDesired = 0; return true;}
|
|
/// auto-focus on a near object
|
|
AREXPORT virtual bool focusNear(void) { myFocusModeDesired = 2; return true;}
|
|
/// auto-fovus on a far object
|
|
AREXPORT virtual bool focusFar(void) { myFocusModeDesired = 3; return true; }
|
|
|
|
/// Gets the current pan slew
|
|
AREXPORT double getPanSlew(void) { return myPanSlewDesired; }
|
|
/// Gets the maximum pan slew
|
|
AREXPORT double getMaxPanSlew(void) { return MAX_PAN_SLEW; }
|
|
/// Gets the minimum pan slew
|
|
AREXPORT double getMinPanSlew(void) { return MIN_PAN_SLEW; }
|
|
|
|
/// Gets the current tilt slew
|
|
AREXPORT double getTiltSlew(void) { return myTiltSlewDesired; }
|
|
/// Gets the maximum tilt slew
|
|
AREXPORT double getMaxTiltSlew(void) { return MAX_TILT_SLEW; }
|
|
/// Gets the minimum tilt slew
|
|
AREXPORT double getMinTiltSlew(void) { return MIN_TILT_SLEW; }
|
|
|
|
AREXPORT virtual int getMaxZoom(void) const;
|
|
AREXPORT virtual int getMinZoom(void) const { return MIN_ZOOM; }
|
|
|
|
AREXPORT virtual bool canGetFOV(void) { return true; }
|
|
/// Gets the field of view at maximum zoom
|
|
AREXPORT virtual double getFOVAtMaxZoom(void) { return myFOVAtMaxZoom; }
|
|
/// Gets the field of view at minimum zoom
|
|
AREXPORT virtual double getFOVAtMinZoom(void) { return myFOVAtMinZoom; }
|
|
|
|
|
|
/// Returns true if the error callback list was called during the last cycle
|
|
AREXPORT bool wasError(void) { return myWasError; }
|
|
|
|
/// Toggle the state of the auto-update
|
|
AREXPORT void enableAutoUpdate(void) { myAutoUpdate = true; }
|
|
AREXPORT void disableAutoUpdate(void) { myAutoUpdate = false; }
|
|
AREXPORT bool getAutoUpdate(void) { return myAutoUpdate; }
|
|
|
|
/// Set the control mode for the status LED on the front of the camera
|
|
/// 0 = auto-control, 1 = Green ON, 2 = All OFF, 3 = Red ON, 4 = Orange ON
|
|
AREXPORT void setLEDControlMode(int controlMode) { myDesiredLEDControlMode = controlMode; }
|
|
/// Turn on IR LEDs. IR-filter must be in place for LEDs to turn on
|
|
AREXPORT void enableIRLEDs(void) { myDesiredIRLEDsMode = true; }
|
|
/// Turn off IR LEDs
|
|
AREXPORT void disableIRLEDs(void) { myDesiredIRLEDsMode = false; }
|
|
/// Returns true if the IR LEDs are on
|
|
AREXPORT bool getIRLEDsEnabled(void) { return myIRLEDsEnabled; }
|
|
/// Enable physical IR cutoff filter
|
|
AREXPORT void enableIRFilterMode(void) { myDesiredIRFilterMode = true; }
|
|
/// Disable IR cutoff filter. This also turns off the LEDs, if they're on
|
|
AREXPORT void disableIRFilterMode(void) { myDesiredIRFilterMode = false; }
|
|
/// Returns true if the IR cutoff filter is in place
|
|
AREXPORT bool getIRFilterModeEnabled (void) { return myIRFilterModeEnabled; }
|
|
protected:
|
|
|
|
// preset limits on movements. Based on empirical data
|
|
enum Param {
|
|
MAX_PAN = 98, // 875 units is max pan assignment
|
|
MIN_PAN = -98, // -875 units is min pan assignment
|
|
MAX_TILT = 88, // 790 units is max tilt assignment
|
|
MIN_TILT = -30, // -267 units is min tilt assignment
|
|
MAX_PAN_SLEW = 90, // 800 positions per sec (PPS)
|
|
MIN_PAN_SLEW = 1, // 8 positions per sec (PPS)
|
|
MAX_TILT_SLEW = 69, // 662 positions per sec (PPS)
|
|
MIN_TILT_SLEW = 1, // 8 positions per sec (PPS)
|
|
MAX_ZOOM_OPTIC = 1960,
|
|
MIN_ZOOM = 0
|
|
};
|
|
|
|
// the various error states that the camera can return
|
|
enum Error {
|
|
CAM_ERROR_NONE = 0x30, ///<No error
|
|
CAM_ERROR_BUSY = 0x31, ///<Camera busy, will not execute the command
|
|
CAM_ERROR_PARAM = 0x35, ///<Illegal parameters to function call
|
|
CAM_ERROR_MODE = 0x39, ///<Not in host control mode
|
|
CAM_ERROR_UNKNOWN = 0xFF ///<Unknown error condition. Should never happen
|
|
};
|
|
|
|
// the states of the FSM
|
|
enum State {
|
|
UNINITIALIZED,
|
|
STATE_UNKNOWN,
|
|
INITIALIZING,
|
|
SETTING_CONTROL_MODE,
|
|
SETTING_INIT_TILT_RATE,
|
|
SETTING_INIT_PAN_RATE,
|
|
SETTING_INIT_RANGE,
|
|
POWERING_ON,
|
|
POWERING_OFF,
|
|
POWERED_OFF,
|
|
POWERED_ON,
|
|
AWAITING_INITIAL_POWERON,
|
|
AWAITING_INITIAL_INIT,
|
|
AWAITING_ZOOM_RESPONSE,
|
|
AWAITING_PAN_TILT_RESPONSE,
|
|
AWAITING_STOP_PAN_TILT_RESPONSE,
|
|
AWAITING_STOP_ZOOM_RESPONSE,
|
|
AWAITING_PAN_SLEW_RESPONSE,
|
|
AWAITING_TILT_SLEW_RESPONSE,
|
|
AWAITING_POS_REQUEST,
|
|
AWAITING_ZOOM_REQUEST,
|
|
AWAITING_LED_CONTROL_RESPONSE,
|
|
AWAITING_IRLEDS_RESPONSE,
|
|
AWAITING_IRFILTER_RESPONSE,
|
|
AWAITING_PRODUCTNAME_REQUEST,
|
|
AWAITING_DIGITAL_ZOOM_RESPONSE,
|
|
AWAITING_FOCUS_RESPONSE,
|
|
STATE_DELAYED_SWITCH,
|
|
STATE_ERROR
|
|
};
|
|
|
|
// flips the sign if needed
|
|
//double invert(double before) const
|
|
// { if (myInverted) return -before; else return before; }
|
|
// bool myInverted;
|
|
|
|
// true if there was an error during the last cycle
|
|
bool myWasError;
|
|
|
|
// the camera name. "C50i" for C50i, and "VC-C" for VC-C4
|
|
std::string myProductName;
|
|
|
|
ArRobot *myRobot;
|
|
ArDeviceConnection *myConn;
|
|
ArBasePacket *newPacket;
|
|
ArVCC4Packet myPacket;
|
|
|
|
// timers for watching for timeouts
|
|
ArTime myStateTime;
|
|
ArTime myPacketTime;
|
|
ArTime myIdleTime;
|
|
|
|
// gets set to true if using an aux port vs computer serial port
|
|
bool myUsingAuxPort;
|
|
|
|
// delay variable, if delaying before switching to the next state
|
|
int myStateDelayTime;
|
|
|
|
// what type of communication the camera is using
|
|
CommState myCommType;
|
|
|
|
// used to read data if the camera is attached directly to a computer
|
|
virtual ArBasePacket* readPacket(void);
|
|
|
|
// the functor to add as a usertask
|
|
ArFunctorC<ArVCC4> myTaskCB;
|
|
|
|
// the actual task to be added as a usertask
|
|
void camTask(void);
|
|
|
|
// true when a response has been received from the camera, but has
|
|
// not yet been acted on by the state machine
|
|
bool myResponseReceived;
|
|
|
|
bool myWaitingOnStop;
|
|
bool myWaitingOnPacket;
|
|
|
|
// the state of the state machine
|
|
State myState;
|
|
State myPreviousState;
|
|
State myNextState;
|
|
|
|
// used to switch between states in the state machine
|
|
void switchState(State state, int delayTime = 0);
|
|
|
|
// the max time before a state times out, and the time for a packet response
|
|
// to timeout. The difference being that a packet reponse can be received
|
|
// immediately, but it could say that the camera is busy, meaning the state
|
|
// has not yet completed
|
|
int myStateTimeout;
|
|
int myPacketTimeout;
|
|
|
|
// request a packet from the microcontroller of size num bytes.
|
|
// most camera responses are 6 bytes, so just use the default
|
|
void requestBytes(int num = 6);
|
|
|
|
// the buffer to store the incoming packet data in
|
|
unsigned char myPacketBuf[50];
|
|
int myPacketBufLen;
|
|
|
|
// how many bytes we're still expecting to receive from the controller
|
|
int myBytesLeft;
|
|
|
|
// these all send commands to the camera.
|
|
bool sendPanTilt(void);
|
|
bool sendZoom(void);
|
|
bool sendPanSlew(void);
|
|
bool sendTiltSlew(void);
|
|
bool sendPower(void);
|
|
bool sendHaltPanTilt(void);
|
|
bool sendHaltZoom(void);
|
|
bool sendRealPanTiltRequest(void);
|
|
bool sendRealZoomRequest(void);
|
|
bool sendDigitalZoom(void);
|
|
bool sendFocus(void);
|
|
|
|
// this is currently not used because it doesn't work right
|
|
bool sendProductNameRequest(void);
|
|
|
|
// the camera type is used to specify VC-C4 vs. C50i
|
|
CameraType myCameraType;
|
|
bool myRequestProductName;
|
|
|
|
bool sendLEDControlMode(void);
|
|
bool sendCameraNameRequest(void);
|
|
int myDesiredLEDControlMode;
|
|
|
|
bool sendIRFilterControl(void);
|
|
bool sendIRLEDControl(void);
|
|
bool myIRLEDsEnabled;
|
|
bool myDesiredIRLEDsMode;
|
|
bool myIRFilterModeEnabled;
|
|
bool myDesiredIRFilterMode;
|
|
|
|
// These should only be used by the state machine to initialize the
|
|
// camera for the first time
|
|
bool setDefaultRange(void);
|
|
bool setControlMode(void);
|
|
bool sendInit(void);
|
|
|
|
// process the packet data for a camera response that has accurate
|
|
// pan/tilt positional information in it, and the product name
|
|
void processGetPanTiltResponse(void);
|
|
void processGetZoomResponse(void);
|
|
void processGetProductNameResponse(void);
|
|
|
|
// true if autoupdating of camera's position should be used
|
|
bool myAutoUpdate;
|
|
|
|
// cycle for stepping through various autoupdate resquests from the camera
|
|
int myAutoUpdateCycle;
|
|
|
|
// returns true if there is no reponse to a packet within the timeout
|
|
// or also if the state times out. The argument will overrid the default
|
|
// timeout periods
|
|
bool timeout(int mSec = 0);
|
|
|
|
// internal reperesenstation of pan, tilt, and zoom positions
|
|
double myPan;
|
|
double myTilt;
|
|
int myZoom;
|
|
int myDigitalZoom;
|
|
int myFocusMode;
|
|
|
|
// used to store the returned positional values when requesting the true
|
|
// position from the camera
|
|
double myPanResponse;
|
|
double myTiltResponse;
|
|
int myZoomResponse;
|
|
|
|
// the returned product name
|
|
char myProductNameResponse[4];
|
|
|
|
// the positions that were last sent to the camera. These are needed
|
|
// because the desired positions can change between time a command is
|
|
// sent and before it succeeds.
|
|
double myPanSent;
|
|
double myTiltSent;
|
|
int myZoomSent;
|
|
double myPanSlewSent;
|
|
double myTiltSlewSent;
|
|
|
|
// internal representation of pan and tilt slew
|
|
double myPanSlew;
|
|
double myTiltSlew;
|
|
|
|
// where the user has requested the camera move to
|
|
double myPanDesired;
|
|
double myTiltDesired;
|
|
int myZoomDesired;
|
|
int myDigitalZoomDesired;
|
|
int myFocusModeDesired;
|
|
|
|
// the pan an tilt slew that the user requested
|
|
double myPanSlewDesired;
|
|
double myTiltSlewDesired;
|
|
|
|
// internal mirror of camera power state, and whether it's be initted
|
|
bool myPowerState;
|
|
bool myCameraIsInitted;
|
|
|
|
// whether the user wants the camera on or off, or initialized
|
|
bool myPowerStateDesired;
|
|
bool myInitRequested;
|
|
|
|
// whether the user has requested to halt movement
|
|
bool myHaltZoomRequested;
|
|
bool myHaltPanTiltRequested;
|
|
|
|
// whether the camera has been initialized since instance inception
|
|
bool myCameraHasBeenInitted;
|
|
|
|
// true if the user has requested to update the camera's postion
|
|
// from the data returned from the camera
|
|
bool myRealPanTiltRequested;
|
|
bool myRealZoomRequested;
|
|
|
|
// the error state from the last packet received
|
|
unsigned int myError;
|
|
|
|
// our FOV numbers (these should change if we use the digital zoom)
|
|
double myFOVAtMaxZoom;
|
|
double myFOVAtMinZoom;
|
|
|
|
// run through the list or error callbacks
|
|
void throwError();
|
|
|
|
// the list of error callbacks to step through when a error occurs
|
|
std::list<ArFunctor *> myErrorCBList;
|
|
|
|
/// Used by ArPTZConnector to create an ArVCC4 object based on robot parameters and program options.
|
|
/// @since 2.7.6
|
|
/// @internal
|
|
static ArPTZ* create(size_t index, ArPTZParams params, ArArgumentParser *parser, ArRobot *robot);
|
|
/// Used by ArPTZConnector to create an ArVCC4 object based on robot parameters and program options.
|
|
/// @since 2.7.6
|
|
/// @internal
|
|
static ArPTZConnector::GlobalPTZCreateFunc ourCreateFunc;
|
|
public:
|
|
#ifndef SWIG
|
|
static void registerPTZType(); ///<@internal Called by Aria::init() toregister this class with ArPTZConnector for vcc4 and vcc50i PTZ types. @since 2.7.6
|
|
#endif
|
|
};
|
|
|
|
#endif // ARVCC4_H
|
|
|