17 lines
528 B
TeX
17 lines
528 B
TeX
|
\subsection{Problem 8}
|
||
|
Let
|
||
|
\begin{equation*}
|
||
|
\matr{A} =
|
||
|
\begin{bmatrix}
|
||
|
\phantom{-}1 & -1 & \phantom{-}0 & \phantom{-}0 \\
|
||
|
-1 & \phantom{-}2 & -1 & \phantom{-}0 \\
|
||
|
\phantom{-}0 & -1 & \phantom{-}2 & -1 \\
|
||
|
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2
|
||
|
\end{bmatrix}
|
||
|
\end{equation*}
|
||
|
|
||
|
Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse.
|
||
|
|
||
|
\lstinputlisting[style=Matlab-editor]{problems/Problem8.m}
|
||
|
|