AAE-NA-Labs/Direct Methods for Solving Linear Systems/Alg8.m

54 lines
1.3 KiB
Mathematica
Raw Normal View History

2021-03-13 20:23:23 +01:00
function [L, U, P] = Alg8(A)
% LU Factorization with partial pivoting
% [L, U, P] = Alg8(A) decomposes matrix A using Crout's algorithm into
% U upper triangular matrix and L unit lower triangular matrix
% using partial pivoting, interchanging A's rows, such that AP = LU.
[m, n] = size(A);
L = zeros(m, n);
U = eye(m, n);
P = eye(m, n);
for k = 1:m
if A(k, k) == 0
non_zero_col = find(A(k, :), 1);
A(:, [k non_zero_col]) = deal(A(:, [non_zero_col k]));
P(:, [k non_zero_col]) = deal(P(:, [non_zero_col k]));
end
end
% TODO: Permutation A*P does not work
%
% for i = m + 1 : M
% A(i:end, m+1:end); % Partial matrix (in which we are looking for non-zero pivots)
% A(i:end, m+1); % Left-most column
% if ~any(A(i:end, m+1)) % If the left-most column has only zeros check the next one
% m = m + 1;
% end
% A(i:end, m+1:end);
% if A(i, m+1) == 0
% non_zero_row = find(A(i:end,m+1), 1);
% if isempty(non_zero_row)
% continue
% end
% A([i, i+non_zero_row-1], :) = deal(A([i+non_zero_row-1, i], :));
% end
% end
for k = 1:n
for j = k : n
U(k, j) = A(k, j) - dot(L(k, 1:k-1), U(1:k-1, j));
end
for i = k:n
L(i, k) = (A(i, k) - dot(L(i,1:k-1), U(1:k-1, k))) / U(k,k);
end
end
end