2021-03-13 21:13:03 +01:00
|
|
|
function A = Alg10(A)
|
|
|
|
% Algorithm 10: Cholesky (Banachiewicz) factorization.
|
|
|
|
% Matrix A has to be symmetric and positive-definite:
|
|
|
|
% all d(i, i) > 0 for A = LDL^T.
|
2023-03-11 20:08:05 +01:00
|
|
|
% We are using Outer product Version (Golub, Load, Alg. 4.2.2), which
|
|
|
|
% computes lower triangular G, such that A = G*G^T
|
2021-03-13 21:13:03 +01:00
|
|
|
|
|
|
|
[m, n] = size(A);
|
|
|
|
|
|
|
|
if m ~= n
|
|
|
|
error('Matrix is not square!')
|
|
|
|
end
|
|
|
|
|
|
|
|
for k = 1:m
|
|
|
|
A(k,k) = sqrt(A(k,k));
|
|
|
|
A(k+1:n, k) = A(k+1:n, k)/A(k,k);
|
|
|
|
for j = k+1:n
|
|
|
|
A(j:n, j) = A(j:n, j) - A(j:n, k)*A(j, k);
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
A = tril(A);
|
|
|
|
|
2023-03-11 20:08:05 +01:00
|
|
|
end
|