59 lines
1.5 KiB
TeX
59 lines
1.5 KiB
TeX
|
\subsection{Problem 10}
|
||
|
Transform the following matrix to the RREF, determine $rank(\mathbf{A})$ and identify the columns corresponding to the basic and free variables.
|
||
|
\begin{equation*}
|
||
|
\matr{A} =
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 2 & 3 & 1 \\
|
||
|
2 & 4 & 4 & 6 & 2 \\
|
||
|
3 & 6 & 6 & 9 & 6 \\
|
||
|
1 & 2 & 4 & 5 & 3
|
||
|
\end{bmatrix}
|
||
|
\end{equation*}
|
||
|
|
||
|
Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse.
|
||
|
|
||
|
\subsubsection*{Solution}
|
||
|
|
||
|
\begin{equation*}
|
||
|
\begin{split}
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 2 & 3 & 1 \\
|
||
|
2 & 4 & 4 & 6 & 2 \\
|
||
|
3 & 6 & 6 & 9 & 6 \\
|
||
|
1 & 2 & 4 & 5 & 3
|
||
|
\end{bmatrix}
|
||
|
\xrightarrow{\substack{R_2 - 2R_1 \\ R_3 - 3R_1 \\ R_4 - R_1}}
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 2 & 3 & 1 \\
|
||
|
0 & 0 & 0 & 0 & 0 \\
|
||
|
0 & 0 & 0 & 0 & 3 \\
|
||
|
0 & 0 & 2 & 2 & 2
|
||
|
\end{bmatrix}
|
||
|
\xrightarrow{pivot}
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 2 & 3 & 1 \\
|
||
|
0 & 0 & 2 & 2 & 2 \\
|
||
|
0 & 0 & 0 & 0 & 3 \\
|
||
|
0 & 0 & 0 & 0 & 0
|
||
|
\end{bmatrix}
|
||
|
\\
|
||
|
\xrightarrow{\substack{R_2 / 2 \\ R_3 / 3}}
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 2 & 3 & 1 \\
|
||
|
0 & 0 & 1 & 1 & 1 \\
|
||
|
0 & 0 & 0 & 0 & 1 \\
|
||
|
0 & 0 & 0 & 0 & 0
|
||
|
\end{bmatrix}
|
||
|
\xrightarrow{\substack{R_1 - R_3 \\ R_2 - R_3}}
|
||
|
\begin{bmatrix}
|
||
|
1 & 2 & 2 & 3 & 0 \\
|
||
|
0 & 0 & 1 & 1 & 0 \\
|
||
|
0 & 0 & 0 & 0 & 1 \\
|
||
|
0 & 0 & 0 & 0 & 0
|
||
|
\end{bmatrix}
|
||
|
\end{split}
|
||
|
\end{equation*}
|
||
|
|
||
|
Rank of the given matrix is equal to 3.
|
||
|
|