37 lines
1.4 KiB
TeX
37 lines
1.4 KiB
TeX
|
\subsection{Problem 4}
|
||
|
Solve the system of linear equations:
|
||
|
\begin{equation*}
|
||
|
\systeme{0.835x_1 + 0.667x_2 = 0.168,0.333x_1 + 0.266x_2 = 0.067}
|
||
|
\end{equation*}
|
||
|
|
||
|
Then slightly perturb $b_2$ from $0.067$ to $0.066$ and compute the solution to the perturbed system. Explain the change in the solution by computing the condition number of the system matrix.
|
||
|
\subsubsection*{Solution}
|
||
|
\begin{equation*}
|
||
|
\begin{amatrix}{1}{1}
|
||
|
\matr{A} & \matr{b}
|
||
|
\end{amatrix} =
|
||
|
\begin{amatrix}{2}{1}
|
||
|
0.835 & 0.667 & 0.168\\
|
||
|
0.333 & 0.266 & 0.067
|
||
|
\end{amatrix} \xrightarrow[R_2-0.333R_1]{\frac{R_1}{0.835}}
|
||
|
\begin{amatrix}{2}{1}
|
||
|
1 & 0.7988 & 0.2012\\
|
||
|
0 & 0 & 0
|
||
|
\end{amatrix}
|
||
|
\end{equation*}
|
||
|
|
||
|
which yields infinite many solutions. Perturbing $b_2$ we obtain:
|
||
|
\begin{equation*}
|
||
|
\begin{amatrix}{1}{1}
|
||
|
\matr{A} & \matr{b'}
|
||
|
\end{amatrix} \xrightarrow[R_2-0.333R_1]{\frac{R_1}{0.835}}
|
||
|
\begin{amatrix}{2}{1}
|
||
|
1 & 0.7988 & 0.2012\\
|
||
|
0 & 0 & -0.001
|
||
|
\end{amatrix}
|
||
|
\end{equation*}
|
||
|
|
||
|
which yields none solutions. Performing the same calculations with Algorithm~\ref{algorithm:5}:
|
||
|
\lstinputlisting[style=Matlab-editor]{problems/Problem4.m}
|
||
|
|
||
|
With enough precision \MATLAB presented two valid solutions. Both of them differed by a factor of hundreds, which may be explained by a huge coefficient number (way over a million).
|