AAE-NA-Labs/01_Direct-Methods-for-Solving-Linear-Systems/Report/problems/Problem8.tex

17 lines
528 B
TeX
Raw Normal View History

2023-03-11 20:08:05 +01:00
\subsection{Problem 8}
Let
\begin{equation*}
\matr{A} =
\begin{bmatrix}
\phantom{-}1 & -1 & \phantom{-}0 & \phantom{-}0 \\
-1 & \phantom{-}2 & -1 & \phantom{-}0 \\
\phantom{-}0 & -1 & \phantom{-}2 & -1 \\
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2
\end{bmatrix}
\end{equation*}
Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse.
\lstinputlisting[style=Matlab-editor]{problems/Problem8.m}