2021-03-13 17:46:26 +01:00
|
|
|
|
function [L, U] = Alg7(A)
|
|
|
|
|
% ADDME LU Factorization without pivoting
|
|
|
|
|
% [L, U] = Alg7(A) decomposes matrix A into U – upper triangular matrix and
|
|
|
|
|
% L – lower unit triangular matrix such, that A = LU.
|
|
|
|
|
|
|
|
|
|
[m, n] = size(A);
|
|
|
|
|
|
2021-03-13 19:02:40 +01:00
|
|
|
|
% This solution is mathematically correct, however computationaly
|
|
|
|
|
% inefficient.
|
|
|
|
|
%
|
|
|
|
|
% A = Alg1_outer_product_gaussian_elimination(A);
|
|
|
|
|
%
|
|
|
|
|
% U = triu(A);
|
|
|
|
|
% L = tril(A, -1) + eye(m);
|
2021-03-13 17:46:26 +01:00
|
|
|
|
|
2021-03-13 19:02:40 +01:00
|
|
|
|
% Instead, we should use the Crout's algorithm
|
|
|
|
|
% It returns an Unit Upper Triangular matrix and a Lower Traingular matrix
|
|
|
|
|
% (in oppose to the Gaussian Elimination).
|
|
|
|
|
A
|
|
|
|
|
|
|
|
|
|
L = zeros(m, n)
|
|
|
|
|
U = eye(m, n)
|
|
|
|
|
|
|
|
|
|
for k = 1:n
|
|
|
|
|
for i = k:n
|
|
|
|
|
L(i, k) = A(i, k) - dot(L(i,1:k-1), U(1:k-1, k));
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
for j = k : n
|
|
|
|
|
U(k, j) = (A(k, j) - dot(L(k, 1:k-1), U(1:k-1, j))) / L(k, k);
|
|
|
|
|
end
|
|
|
|
|
end
|
2021-03-13 17:46:26 +01:00
|
|
|
|
|
|
|
|
|
end
|