Refactored functions from 1 to 5
This commit is contained in:
parent
302dc37f78
commit
41b7057eab
@ -1,5 +1,5 @@
|
|||||||
% Algorithm 1: Outer Product Gaussian Elimination (Alg. 3.2.1)
|
% Algorithm 1: Outer Product Gaussian Elimination (Alg. 3.2.1)
|
||||||
function A = outer_product_gaussian_elimination(A)
|
function A = Alg1_outer_product_gaussian_elimination(A)
|
||||||
|
|
||||||
[n, m] = size(A);
|
[n, m] = size(A);
|
||||||
if n ~= m
|
if n ~= m
|
||||||
@ -14,4 +14,6 @@ end
|
|||||||
rows = k + 1 : n;
|
rows = k + 1 : n;
|
||||||
A(rows, k) = A(rows, k)/A(k, k);
|
A(rows, k) = A(rows, k)/A(k, k);
|
||||||
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
|
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
|
||||||
end
|
end
|
||||||
|
|
||||||
|
end
|
@ -1,4 +1,4 @@
|
|||||||
function [P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A)
|
function [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
|
||||||
|
|
||||||
[n, m] = size(A);
|
[n, m] = size(A);
|
||||||
if n ~= m
|
if n ~= m
|
@ -1,5 +1,5 @@
|
|||||||
% Algorithm 3: Forward Substitution (Alg. 3.1.1)
|
% Algorithm 3: Forward Substitution (Alg. 3.1.1)
|
||||||
function b = forward_substitution(L, b)
|
function b = Alg3_forward_substitution(L, b)
|
||||||
|
|
||||||
[n, m] = size(L);
|
[n, m] = size(L);
|
||||||
if n ~= m
|
if n ~= m
|
@ -1,5 +1,5 @@
|
|||||||
% Argorithm 4: Back Substitution (Alg. 3.1.2)
|
% Argorithm 4: Back Substitution (Alg. 3.1.2)
|
||||||
function b = back_substitution(U,b)
|
function b = Alg4_back_substitution(U,b)
|
||||||
|
|
||||||
[n, m] = size(U);
|
[n, m] = size(U);
|
||||||
if n ~= m
|
if n ~= m
|
@ -1,6 +1,6 @@
|
|||||||
% Algorithm 5: Gauss-Jordan Elimination
|
% Algorithm 5: Gauss-Jordan Elimination (Alg.
|
||||||
% Argument A is an augmented matrix
|
% Argument A is an augmented matrix
|
||||||
function A = gauss_jordan_elimination(A)
|
function A = Alg5_gauss_jordan_elimination(A)
|
||||||
|
|
||||||
% M – rows, N – columns
|
% M – rows, N – columns
|
||||||
|
|
@ -7,7 +7,7 @@ A = [2, -1, 0, 0;
|
|||||||
|
|
||||||
b = [0;0;0;5];
|
b = [0;0;0;5];
|
||||||
|
|
||||||
B = outer_product_gaussian_elimination(A);
|
B = Alg1_outer_product_gaussian_elimination(A);
|
||||||
U = triu(B);
|
U = triu(B);
|
||||||
L = tril(B, -1);
|
L = tril(B, -1);
|
||||||
x = back_substitution(U, b);
|
x = back_substitution(U, b);
|
||||||
@ -23,7 +23,7 @@ b = [0;0;0;5];
|
|||||||
|
|
||||||
B = gauss_jordan_elimination([A b])
|
B = gauss_jordan_elimination([A b])
|
||||||
|
|
||||||
[P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A);
|
[P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A);
|
||||||
|
|
||||||
b = P*b;
|
b = P*b;
|
||||||
% Ly = b and Ux = y
|
% Ly = b and Ux = y
|
||||||
@ -40,7 +40,7 @@ A = [1, 1, 1;
|
|||||||
|
|
||||||
b = [1;2;1];
|
b = [1;2;1];
|
||||||
|
|
||||||
[P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A);
|
[P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A);
|
||||||
|
|
||||||
b = P*b;
|
b = P*b;
|
||||||
% Ly = b and Ux = y
|
% Ly = b and Ux = y
|
||||||
@ -69,11 +69,13 @@ A = [2, 1, 2;
|
|||||||
1, 2, 3;
|
1, 2, 3;
|
||||||
4, 1, 2];
|
4, 1, 2];
|
||||||
|
|
||||||
[P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A);
|
[P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A);
|
||||||
|
|
||||||
I = P*eye(3);
|
I = P*eye(3);
|
||||||
% Ly = b and Ux = y
|
% Ly = b and Ux = y
|
||||||
y = forward_substitution(L, I);
|
y = forward_substitution(L, I);
|
||||||
|
|
||||||
X = Q*back_substitution(U, y)
|
X = Q*back_substitution(U, y)
|
||||||
inv(A)
|
inv(A)
|
||||||
|
|
||||||
|
%% Problem 6
|
||||||
|
Loading…
Reference in New Issue
Block a user