Introduced forward_substitution()
This commit is contained in:
parent
7742a178b7
commit
87f957d903
@ -1,5 +1,5 @@
|
||||
% Argorithm 4: Back Substitution (Alg. 3.1.2)
|
||||
function back_substitution(U,b)
|
||||
function b = back_substitution(U,b)
|
||||
|
||||
[n, m] = size(U);
|
||||
if n ~= m
|
||||
@ -14,9 +14,9 @@ if det(U) == 0
|
||||
error('Matrix is not nonsingular!')
|
||||
end
|
||||
|
||||
b(n) = b(n)/U(n, n)
|
||||
b(n) = b(n)/U(n, n);
|
||||
for i = n-1:-1:1
|
||||
b(i) = (b(i) - U(i, i+1 : n)*b(i+1 : n))/U(i, i)
|
||||
b(i) = (b(i) - U(i, i+1 : n)*b(i+1 : n))/U(i, i);
|
||||
end
|
||||
|
||||
end
|
@ -0,0 +1,17 @@
|
||||
% Algorithm 3: Forward Substitution (Alg. 3.1.1)
|
||||
function b = forward_substitution(L, b)
|
||||
|
||||
[n, m] = size(L);
|
||||
if n ~= m
|
||||
error('Matrix is not squared!')
|
||||
end
|
||||
|
||||
if length(b) ~= n
|
||||
error('Vector b has wrong length!')
|
||||
end
|
||||
|
||||
b(1) = b(1)/L(1,1);
|
||||
for i = 2:n
|
||||
b(i) = (b(i) - L(i, 1:i-1)*b(1:i-1))/L(i, i);
|
||||
end
|
||||
|
@ -1,4 +1,4 @@
|
||||
function gaussian_elimination_with_complete_pivoting(A)
|
||||
function A = gaussian_elimination_with_complete_pivoting(A)
|
||||
|
||||
% det(A(mi, lm))
|
||||
|
||||
@ -15,16 +15,17 @@ for k = 1 : n-1
|
||||
i = k:n;
|
||||
j = k:n;
|
||||
A(i, j);
|
||||
maximum = max(abs(A(i, j)), [], 'all')
|
||||
max_idx = find(abs(A==maximum))
|
||||
[mi, lm] = ind2sub(size(A), max_idx(1))
|
||||
A(k, 1:n) = A(mi, 1:n)
|
||||
A(1:n, k) = A(1:n, lm)
|
||||
p(k) = mi
|
||||
q(k) = lm
|
||||
maximum = max(abs(A(i, j)), [], 'all');
|
||||
max_idx = find(abs(A==maximum));
|
||||
[mi, lm] = ind2sub(size(A), max_idx(1));
|
||||
A([k mi], 1:n) = deal(A([mi k], 1:n));
|
||||
A(1:n, [k lm]) = deal(A(1:n, [lm k]));
|
||||
p(k) = mi;
|
||||
q(k) = lm;
|
||||
% Perform Gaussian elimination with the greatest pivot
|
||||
if A(k, k) ~= 0
|
||||
rows = k+1 : n
|
||||
A(rows, k) = A(rows, k)/A(k, k)
|
||||
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows)
|
||||
rows = k+1 : n;
|
||||
A(rows, k) = A(rows, k)/A(k, k);
|
||||
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
|
||||
end
|
||||
end
|
@ -1,8 +1,10 @@
|
||||
clear all;
|
||||
|
||||
B = [2, -1, 0, 0; -1, 2, -1, 0;0, -1, 2, -1; 0, 0, -1, 2]
|
||||
B = [2, -1, 0, 0; -1, 2, -1, 0;0, -1, 2, -1; 0, 0, -1, 2];
|
||||
|
||||
b = [0;0;0;5]
|
||||
b = [0;0;0;5];
|
||||
|
||||
[U, Mk] = outer_product_gaussian_elimination(B)
|
||||
back_substitution(U, b)
|
||||
[U, Mk] = outer_product_gaussian_elimination(B);
|
||||
back_substitution(U, b);
|
||||
|
||||
A = gaussian_elimination_with_complete_pivoting(B);
|
||||
|
@ -10,14 +10,11 @@ end
|
||||
error('Matrix is not nonsingular!')
|
||||
end
|
||||
|
||||
A;
|
||||
|
||||
for k = 1 : n-1
|
||||
rows = k + 1 : n;
|
||||
A(rows, k) = A(rows, k)/A(k, k);
|
||||
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
|
||||
A;
|
||||
end
|
||||
|
||||
U = triu(A)
|
||||
Mk = diag(A,-1) % Gauss vector
|
||||
U = triu(A);
|
||||
Mk = diag(A,-1); % Gauss vector
|
||||
|
Loading…
Reference in New Issue
Block a user