All algorithms from 1 to 5 work just fine!

This commit is contained in:
Sergiusz Warga 2021-03-07 22:56:18 +01:00
parent f79e4508b1
commit d4d323fd19
6 changed files with 108 additions and 52 deletions

View File

@ -14,9 +14,11 @@ if det(U) == 0
error('Matrix is not nonsingular!') error('Matrix is not nonsingular!')
end end
b(n) = b(n)/U(n, n); % b(n, :) so that matrices are also accepted
b(n, :) = b(n, :)/U(n, n);
for i = n-1:-1:1 for i = n-1:-1:1
b(i) = (b(i) - U(i, i+1 : n)*b(i+1 : n))/U(i, i); b(i, :) = (b(i, :) - U(i, i+1 : n)*b(i+1 : n, :))/U(i, i);
end end
end end

View File

@ -10,8 +10,8 @@ if length(b) ~= n
error('Vector b has wrong length!') error('Vector b has wrong length!')
end end
b(1) = b(1)/L(1,1); b(1, :) = b(1, :)/L(1,1);
for i = 2:n for i = 2:n
b(i) = (b(i) - L(i, 1:i-1)*b(1:i-1))/L(i, i); b(i, :) = (b(i, :) - L(i, 1:i-1)*b(1:i-1, :))/L(i, i);
end end

View File

@ -1,31 +1,25 @@
% Algorithm 5: Gauss-Jordan Elimination
% Input A is an augmented matrix
function A = gauss_jordan_elimination(A) function A = gauss_jordan_elimination(A)
[n, m] = size(A); [n, m] = size(A);
if n ~= m
if n + 1 ~= m
error('Matrix is not squared!') error('Matrix is not squared!')
end end
if det(A) == 0 % if det(A) == 0
error('Matrix is not nonsingular!') % error('Matrix is not nonsingular!')
end % end
A for k = 1 : m-1
for k = 1 : n-1 row = A(k, :);
i = k:n; row = row/row(k);
j = k:n; A(k, :) = row;
A(i, j); for l = 1 : m-1
maximum = max(abs(A(i, j)), [], 'all'); if l ~= k
max_idx = find(abs(A==maximum)); A(l, :) = A(l, :)-(A(l, k))*row;
[mi, lm] = ind2sub(size(A), max_idx(1)); end
A([k mi], 1:n) = deal(A([mi k], 1:n));
A(1:n, [k lm]) = deal(A(1:n, [lm k]));
p(k) = mi;
q(k) = lm;
% Perform Gaussian elimination with the greatest pivot
if A(k, k) ~= 0
rows = k+1 : n;
A(rows, k) = A(rows, k)/A(k, k);
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
end end
end end

View File

@ -1,4 +1,4 @@
function [U, L] = gaussian_elimination_with_complete_pivoting(A) function [P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A)
[n, m] = size(A); [n, m] = size(A);
if n ~= m if n ~= m
@ -9,24 +9,25 @@ if det(A) == 0
error('Matrix is not nonsingular!') error('Matrix is not nonsingular!')
end end
A p = 1:n;
q = 1:n;
% for k = 1 : n-1 % for k = 1 : n-1
for k = 1 : n-1 for k = 1 : n-1
i = k:n; i = k:n;
j = k:n; j = k:n;
A(i, j) A(i, j);
[max_val, rows_of_max_in_col] = max(abs(A(i, j))); [max_val, rows_of_max_in_col] = max(abs(A(i, j)));
[max_val, max_col] = max(max_val); [max_val, max_col] = max(max_val);
max_row = rows_of_max_in_col(max_col); max_row = rows_of_max_in_col(max_col);
% Assing value of mi and lambda in respect to the main A matrix % Assing value of mi and lambda in respect to the main A matrix
[mi, lm] = deal(max_row+k-1, max_col+k-1) [mi, lm] = deal(max_row+k-1, max_col+k-1);
A([k mi], 1:n) = deal(A([mi k], 1:n)) A([k mi], 1:n) = deal(A([mi k], 1:n));
A(1:n, [k lm]) = deal(A(1:n, [lm k])) A(1:n, [k lm]) = deal(A(1:n, [lm k]));
p(k) = mi p([k, mi]) = p([mi, k]);
q(k) = lm q([k, lm]) = q([lm, k]);
% Perform Gaussian elimination with the greatest pivot
% Perform Gaussian elimination with the greatest pivot
if A(k, k) ~= 0 if A(k, k) ~= 0
rows = k+1 : n; rows = k+1 : n;
A(rows, k) = A(rows, k)/A(k, k); A(rows, k) = A(rows, k)/A(k, k);
@ -36,8 +37,6 @@ end
U = triu(A); U = triu(A);
L = tril(A, -1) + eye(n); L = tril(A, -1) + eye(n);
p
I = eye(n); I = eye(n);
P = I(p, :) P = I(p, :);
q Q = I(:, q);
Q = I(:, q)

View File

@ -1,15 +1,79 @@
clear all; clear all;
B = [2, -1, 0, 0; A = [2, -1, 0, 0;
-1, 2, -1, 0; -1, 2, -1, 0;
3, -1, 2, -1; 0, -1, 2, -1;
0, 4, -1, 2]; 0, 0, -1, 2];
b = [0;0;0;5]; b = [0;0;0;5];
[U, L] = outer_product_gaussian_elimination(B); B = outer_product_gaussian_elimination(A);
back_substitution(U, b); U = triu(B);
L = tril(B, -1);
x = back_substitution(U, b);
[U, L] = gaussian_elimination_with_complete_pivoting(B) %% Problem 1
L*U clear all;
% A = gauss_jordan_elimination(B) A = [2, -1, 0, 0;
-1, 2, -1, 0;
0, -1, 2, -1;
0, 0, -1, 2];
b = [0;0;0;5];
B = gauss_jordan_elimination([A b])
[P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A);
b = P*b;
% Ly = b and Ux = y
y = forward_substitution(L, b);
x = Q*back_substitution(U, y);
% L*U
%% Problem 2
A = [1, 1, 1;
1, 1, 2;
1, 2, 2];
b = [1;2;1];
[P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A);
b = P*b;
% Ly = b and Ux = y
y = forward_substitution(L, b);
x = Q*back_substitution(U, y)
% L*U
%% Problem 4
A = [0.835, 0.667;
0.333, 0.266];
b = [0.168; 0.067];
bp = [0.168; 0.066];
kappa = cond(A)
B = gauss_jordan_elimination([A b])
Bp = gauss_jordan_elimination([A bp])
%% Problem 5
% AX = I3
A = [2, 1, 2;
1, 2, 3;
4, 1, 2];
[P, Q, L, U] = gaussian_elimination_with_complete_pivoting(A);
I = P*eye(3);
% Ly = b and Ux = y
y = forward_substitution(L, I);
X = Q*back_substitution(U, y)
inv(A)

View File

@ -1,5 +1,5 @@
% Algorithm 1: Outer Product Gaussian Elimination (Alg. 3.2.1) % Algorithm 1: Outer Product Gaussian Elimination (Alg. 3.2.1)
function [U, L] = outer_product_gaussian_elimination(A) function A = outer_product_gaussian_elimination(A)
[n, m] = size(A); [n, m] = size(A);
if n ~= m if n ~= m
@ -15,6 +15,3 @@ end
A(rows, k) = A(rows, k)/A(k, k); A(rows, k) = A(rows, k)/A(k, k);
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows); A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
end end
U = triu(A);
L = tril(A, -1) + eye(n);