\subsection{Problem 7} Let $\mathbf{A} = \left[a_{ij}\right] \in\mathbb{R}^{N\times N}$ with, $a_{ij} = \frac{1}{i + j - 1}$ (Hilbert matrix). For $N=5$, perform the LU factorization of the matrix $\mathbf{A}$. Then, compute det($\mathbf{A}$). \subsubsection*{Mathematics} Hilbert matrices are an example of ill-conditioned matrices, which -- with their high $\kappa$ -- makes the numerical computations highly unstable. For our $\mathbf{H} = \left[h_{ij}\right] \in\mathbb{R}^{5\times 5}$: \begin{equation*} \matr{H} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix} \end{equation*} $\kappa(\matr{H})\approx4.7\cdot10^5$ which is a huge value similar to this in the Problem 4. \subsubsection*{Solution} \lstinputlisting[style=Matlab-editor]{problems/Problem7.m} The above results may look promising, but a determinant calculated both by \MATLAB and our algorithms is of the order of $4\cdot10^{-12}$, which for numerical computations is highly not useful.