\subsection{Problem 10} Transform the following matrix to the RREF, determine $rank(\mathbf{A})$ and identify the columns corresponding to the basic and free variables. \begin{equation*} \matr{A} = \begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 2 & 4 & 4 & 6 & 2 \\ 3 & 6 & 6 & 9 & 6 \\ 1 & 2 & 4 & 5 & 3 \end{bmatrix} \end{equation*} Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse. \subsubsection*{Solution} \begin{equation*} \begin{split} \begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 2 & 4 & 4 & 6 & 2 \\ 3 & 6 & 6 & 9 & 6 \\ 1 & 2 & 4 & 5 & 3 \end{bmatrix} \xrightarrow{\substack{R_2 - 2R_1 \\ R_3 - 3R_1 \\ R_4 - R_1}} \begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{pivot} \begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \xrightarrow{\substack{R_2 / 2 \\ R_3 / 3}} \begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\substack{R_1 - R_3 \\ R_2 - R_3}} \begin{bmatrix} 1 & 2 & 2 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{split} \end{equation*} Rank of the given matrix is equal to 3.