\subsection{Problem 15} Find the currents in the circuit, assuming all resistances are 10 Ohm. \begin{figure}[h] \centering \includegraphics[width=0.5\textwidth]{images/electro.png} \label{fig:electro} \end{figure} \subsubsection*{Solution} \begin{equation*} \left\{\begin{matrix} I_{L1}(R_1 + R_2) - I_{L3}(R_2) = -E_2\\ I_{L2}(R_3 + R_4) - I_{L3}(R_3) = E_2\\ -I_{L1}(R_2) - I_{L2}(R_3) + I_{L3}(R_2 + R_3) = -E_1 \end{matrix}\right. \end{equation*} After substitution we have: \begin{equation*} \begin{amatrix}{1}{1} \matr{A} & \matr{b} \end{amatrix} = \begin{amatrix}{3}{1} 20 & 0 & -10 & -10 \\ 0 & 20 & -10 & 10 \\ -10 & -10 & 20 & -20 \end{amatrix} \xrightarrow[magic]{} \begin{amatrix}{3}{1} 1 & 0 & 0 & -1.5 \\ 0 & 1 & 0 & -0.5 \\ 0 & 0 & 1 & -2 \end{amatrix} \end{equation*} \begin{equation*} \left\{\begin{matrix} I_1 = -I_{L3} \\ I_2 = -I_{L1} + I_{L2} \\ I_3 = I_{L1} - I_{L3} \\ I_4 = -I_{L1} \\ I_5 = I_{L2} - I_{L3} \\ I_6 = -I_{L2} \end{matrix}\right. \end{equation*} \begin{equation*} \left\{\begin{matrix} I_1 = 2 \\ I_2 = 1 \\ I_3 = 0.5 \\ I_4 = 1.5 \\ I_5 = 1.5 \\ I_6 = 0.5 \end{matrix}\right. \end{equation*}