\subsection{Problem 4} Solve the system of linear equations: \begin{equation*} \systeme{0.835x_1 + 0.667x_2 = 0.168,0.333x_1 + 0.266x_2 = 0.067} \end{equation*} Then slightly perturb $b_2$ from $0.067$ to $0.066$ and compute the solution to the perturbed system. Explain the change in the solution by computing the condition number of the system matrix. \subsubsection*{Solution} \begin{equation*} \begin{amatrix}{1}{1} \matr{A} & \matr{b} \end{amatrix} = \begin{amatrix}{2}{1} 0.835 & 0.667 & 0.168\\ 0.333 & 0.266 & 0.067 \end{amatrix} \xrightarrow[R_2-0.333R_1]{\frac{R_1}{0.835}} \begin{amatrix}{2}{1} 1 & 0.7988 & 0.2012\\ 0 & 0 & 0 \end{amatrix} \end{equation*} which yields infinite many solutions. Perturbing $b_2$ we obtain: \begin{equation*} \begin{amatrix}{1}{1} \matr{A} & \matr{b'} \end{amatrix} \xrightarrow[R_2-0.333R_1]{\frac{R_1}{0.835}} \begin{amatrix}{2}{1} 1 & 0.7988 & 0.2012\\ 0 & 0 & -0.001 \end{amatrix} \end{equation*} which yields none solutions. Performing the same calculations with Algorithm~\ref{algorithm:5}: \lstinputlisting[style=Matlab-editor]{problems/Problem4.m} With enough precision \MATLAB presented two valid solutions. Both of them differed by a factor of hundreds, which may be explained by a huge coefficient number (way over a million).