\subsection{Problem 1} Solve the system and find the pivots when: \begin{equation*} \systeme{2u-v=0,-u+2v-w=0,-v+2w-z=0,-w+2z=5} \end{equation*} \subsubsection*{Mathematics} The solution to a linear system like the one presented above may be obtained via Gauss-Jordan Elimination. An augmented matrix $\matr{B} = \begin{amatrix}{1}{1} \matr{A} & \matr{b} \end{amatrix}$, where $\matr{A}$ is a coefficient matrix, and $\matr{b}$ is a column vector of constant terms, is assembled. Then, the algorithm implemented in \ref{algorithm:5} is performed. Note, that none of the $a_{ii}$ can be equal to zero for this algorithm to work properly\footnote{Explanation of this property is presented in \ref{problem:2}}. \subsubsection*{Solution} Manual calculations were performed. In the following transformations a row normalization is presented above the arrow and then a zeroing is below it. \begin{equation*} \begin{split} \begin{amatrix}{1}{1} \matr{A} & \matr{b} \end{amatrix} = \begin{amatrix}{4}{1} \phantom{-}2 & -1 & \phantom{-}0 & \phantom{-}0 & 0\\ -1 & \phantom{-}2 & -1 & \phantom{-}0 & 0\\ \phantom{-}0 & -1 & \phantom{-}2 & -1 & 0\\ \phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2 & 5 \end{amatrix} \xrightarrow[R_2 + R_1]{\frac{1}{2}R_1} \begin{amatrix}{4}{1} \phantom{-}1 & -\frac{1}{2} & \phantom{-}0 & \phantom{-}0 & 0\\ \phantom{-}0 & \phantom{-}\frac{3}{2} & -1 & \phantom{-}0 & 0\\ \phantom{-}0 & -1 & \phantom{-}2 & -1 & 0\\ \phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2 & 5 \end{amatrix} \xrightarrow[\substack{R_1+\frac{1}{2}R_2\\R_3+R_2}]{\frac{2}{3}R_2} \\ \xrightarrow[R_3+\frac{2}{3}R_2]{\frac{2}{3}R_2} \begin{amatrix}{4}{1} \phantom{-}1 & \phantom{-}0 & -\frac{1}{3} & \phantom{-}0 & 0\\ \phantom{-}0 & \phantom{-}1 & -\frac{2}{3} & \phantom{-}0 & 0\\ \phantom{-}0 & \phantom{-}0 & \phantom{-}\frac{4}{3} & -1 & 0\\ \phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2 & 5 \end{amatrix} \xrightarrow[\substack{R_1+\frac{1}{3}R_3\\R_2+\frac{2}{3}R_3\\R_4+R_3}]{\frac{3}{4}R_3} \begin{amatrix}{4}{1} \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & -\frac{1}{4} & 0\\ \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & -\frac{1}{2} & 0\\ \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & -\frac{3}{4} & 0\\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & -\frac{4}{3} & 5 \end{amatrix} \xrightarrow[\substack{R_1+\frac{1}{4}R_4\\R_2+\frac{1}{2}R_4\\R_3+\frac{3}{4}R_4}]{-\frac{3}{4}R_4}\\ \xrightarrow[\substack{R_1+\frac{1}{4}R_4\\R_2+\frac{1}{2}R_4\\R_3+\frac{3}{4}R_4}]{-\frac{3}{4}R_4} \begin{amatrix}{4}{1} \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & 1\\ \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & 2\\ \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & 3\\ \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & 4 \end{amatrix} \rightarrow \begin{cases} u=1\\ v=2\\ w=3\\ z=4 \end{cases} \end{split} \end{equation*} Above result was verified with the Algorithm~\ref{algorithm:5}: \lstinputlisting[style=Matlab-editor]{problems/Problem1.m}