function A = Alg6_RREF(A) % Algorithm 6: Reduced Row Echelon Form (RREF) % M – rows, N – columns [M, N] = size(A); n = 0; for m = 1 : M n = n + 1 if n > N break end A % We want the left-most coefficient to be 1 (pivot) row = A(m, :); if row(m) == 0 n = n + 1 end [m ,n] row = row/row(n); A(m, :) = row; for i = 1 : M if i ~= m A(i, :) = A(i, :)-(A(i, n))*row; end end A for i = m + 1 : M A(i:end, m+1:end); % Partial matrix (in which we are looking for non-zero pivots) A(i:end, m+1); % Left-most column if ~any(A(i:end, m+1)) % If the left-most column has only zeros check the next one m = m + 1; end A(i:end, m+1:end); if A(i, m+1) == 0 non_zero_row = find(A(i:end,m+1), 1); if isempty(non_zero_row) continue end A([i, i+non_zero_row-1], :) = deal(A([i+non_zero_row-1, i], :)); end end end end