AAE-NA-Labs/01_Direct-Methods-for-Solving-Linear-Systems/Report/problems/Problem6.tex
Sergiusz Warga a3fa9eb91d refac
2023-03-11 20:08:05 +01:00

27 lines
1.2 KiB
TeX

\subsection{Problem 6}
Apply the LU factorization to the matrix
\begin{equation*}
\matr{A} =
\begin{bmatrix}
\phantom{-}1 & 2 & 3 & 4 \\
-1 & 1 & 2 & 1 \\
\phantom{-}0 & 2 & 1 & 3 \\
\phantom{-}0 & 0 & 1 & 1
\end{bmatrix}
\end{equation*}
Then calculate $\det(\matr{A})$ using the matrix $\matr{U}$. Finally solve $\matr{A}\matr{x}=\matr{b}$ for $\matr{b}=[1\dots1]^T$.
\subsubsection*{Mathematics}
The LU Factorization decomposes matrix $\matr{A}$ into an upper triangular matrix $\matr{U}$ and unit lower triangular matrix $\matr{L}$, so that
\begin{equation*}
\matr{A} = \matr{L}\matr{U}
\end{equation*}
Using the property of a determinant and a fact, that $\det(\matr{L}) = 1$ one can calculate $\det(\matr{A})$ as
\begin{equation*}
\det(\matr{A}) = \det(\matr{L}\matr{U}) = \det(\matr{L}) \cdot \det(\matr{U}) = \det(\matr{U}) = u_{11}\cdots u_{nn}
\end{equation*}
\subsubsection*{Solution}
A glance at the matrix $\matr{A}$ tells us that it is not strictly diagonally dominant, so a pivoting algorithm should be used.
%\footnote{$\matr{A}\in\mathbb{R}^{n\times n}$ is \textit{strictly diagonally dominant} if $|a_{ii}|>\sum_{j=1 j i}^n|a_{ij}|$}
\lstinputlisting[style=Matlab-editor]{problems/Problem6.m}