AAE-NA-Labs/Direct Methods for Solving Linear Systems/gaussian_elimination_with_complete_pivoting.m
2021-03-06 20:58:15 +01:00

43 lines
942 B
Matlab

function [U, L] = gaussian_elimination_with_complete_pivoting(A)
[n, m] = size(A);
if n ~= m
error('Matrix is not squared!')
end
if det(A) == 0
error('Matrix is not nonsingular!')
end
A
% for k = 1 : n-1
for k = 1 : n-1
i = k:n;
j = k:n;
A(i, j)
[max_val, rows_of_max_in_col] = max(abs(A(i, j)));
[max_val, max_col] = max(max_val);
max_row = rows_of_max_in_col(max_col);
% Assing value of mi and lambda in respect to the main A matrix
[mi, lm] = deal(max_row+k-1, max_col+k-1)
A([k mi], 1:n) = deal(A([mi k], 1:n))
A(1:n, [k lm]) = deal(A(1:n, [lm k]))
p(k) = mi
q(k) = lm
% Perform Gaussian elimination with the greatest pivot
if A(k, k) ~= 0
rows = k+1 : n;
A(rows, k) = A(rows, k)/A(k, k);
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
end
end
U = triu(A);
L = tril(A, -1) + eye(n);
p
I = eye(n);
P = I(p, :)
q
Q = I(:, q)