AAE-NA-Labs/01_Direct-Methods-for-Solving-Linear-Systems/Report/problems/Problem10.tex
Sergiusz Warga a3fa9eb91d refac
2023-03-11 20:08:05 +01:00

59 lines
1.5 KiB
TeX

\subsection{Problem 10}
Transform the following matrix to the RREF, determine $rank(\mathbf{A})$ and identify the columns corresponding to the basic and free variables.
\begin{equation*}
\matr{A} =
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
2 & 4 & 4 & 6 & 2 \\
3 & 6 & 6 & 9 & 6 \\
1 & 2 & 4 & 5 & 3
\end{bmatrix}
\end{equation*}
Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse.
\subsubsection*{Solution}
\begin{equation*}
\begin{split}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
2 & 4 & 4 & 6 & 2 \\
3 & 6 & 6 & 9 & 6 \\
1 & 2 & 4 & 5 & 3
\end{bmatrix}
\xrightarrow{\substack{R_2 - 2R_1 \\ R_3 - 3R_1 \\ R_4 - R_1}}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 2 & 2 & 2
\end{bmatrix}
\xrightarrow{pivot}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\\
\xrightarrow{\substack{R_2 / 2 \\ R_3 / 3}}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\substack{R_1 - R_3 \\ R_2 - R_3}}
\begin{bmatrix}
1 & 2 & 2 & 3 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\end{split}
\end{equation*}
Rank of the given matrix is equal to 3.