AAE-NA-Labs/Direct Methods for Solving Linear Systems/main.m

97 lines
1.4 KiB
Matlab

clear all;
A = [2, -1, 0, 0;
-1, 2, -1, 0;
0, -1, 2, -1;
0, 0, -1, 2];
b = [0;0;0;5];
B = Alg1_outer_product_gaussian_elimination(A);
U = triu(B);
L = tril(B, -1);
x = back_substitution(U, b);
%% Problem 1
clear all;
A = [2, -1, 0, 0;
-1, 2, -1, 0;
0, -1, 2, -1;
0, 0, -1, 2];
b = [0;0;0;5];
B = gauss_jordan_elimination([A b])
[P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A);
b = P*b;
% Ly = b and Ux = y
y = forward_substitution(L, b);
x = Q*back_substitution(U, y);
% L*U
%% Problem 2
A = [1, 1, 1;
1, 1, 2;
1, 2, 2];
b = [1;2;1];
[P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A);
b = P*b;
% Ly = b and Ux = y
y = forward_substitution(L, b);
x = Q*back_substitution(U, y)
% L*U
%% Problem 4
A = [0.835, 0.667;
0.333, 0.266];
b = [0.168; 0.067];
bp = [0.168; 0.066];
kappa = cond(A)
B = Alg5_gauss_jordan_elimination([A b])
Bp = Alg5_gauss_jordan_elimination([A bp])
%% Problem 5
% AX = I3
A = [2, 1, 2;
1, 2, 3;
4, 1, 2];
[P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A);
I = P*eye(3);
% Ly = b and Ux = y
y = forward_substitution(L, I);
X = Q*back_substitution(U, y)
inv(A)
%% Problem 6
%% Problem 10
% A = [1 2 2 3 1;
% 2 4 4 6 2;
% 3 6 6 9 6;
% 1 2 4 5 3]
A = [0.835, 0.667;
0.333, 0.266];
b = [0.168; 0.067];
Alg6_RREF([A b])