rosaria/Legacy/Aria/include/ArLaser.h

762 lines
30 KiB
C
Raw Normal View History

2021-12-16 15:07:59 +01:00
/*
Adept MobileRobots Robotics Interface for Applications (ARIA)
Copyright (C) 2004, 2005 ActivMedia Robotics LLC
Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc.
Copyright (C) 2011, 2012, 2013 Adept Technology
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
If you wish to redistribute ARIA under different terms, contact
Adept MobileRobots for information about a commercial version of ARIA at
robots@mobilerobots.com or
Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960
*/
#ifndef ARRANGEDEVICELASER_H
#define ARRANGEDEVICELASER_H
#include "ariaTypedefs.h"
#include "ArRangeDeviceThreaded.h"
class ArDeviceConnection;
/** Range device interface specialized for laser rangefinder sensors.
This class is a subclass of ArRangeDeviceThreaded meant for any
planar scanning lasers, like the SICK lasers, Hokoyo URG series
lasers, etc. Unlike other base classes this contains the superset
of everything that may need to be configured on any of the sensors,
even though some subclasses may only provide some of those parameters
and features. (This allows the configuration interfaces and parameter
files to work for any laser type.)
Normally, a program does not define or create any ArLaser objects
directly. Instead,
objects (device-specific subclasses of ArLaser) are created by ArLaserConnector::connectLasers()
based on the robot parameter file and command line arguments, and
the resulting ArLaser objects are stored in the ArRobot object
Use ArRobot::getLaserMap() or ArRobot::findLaser() to access the ArLaser
objects after calling ArLaserConnector::connectLasers().
The
canSetDegrees(), canChooseRange(), canSetIncrement(),
canChooseIncrement(), canChooseUnits(), canChooseReflectorBits(),
canSetPowerControlled(), canChooseStartBaud(), and canChooseAutoBaud() and
other similar functions are used by ArLaserConnector to test if a parameter
is relevant to a specific laser type.
@par Creating New ArLaser Subclasses
If you want to create your own new class to implement a sensor
not in ARIA, create a subclass of this class. ArUrg
is the best current example of this.
Call the laserAllow*
functions in its constructor depending on what features
that laser sensor has (use the laserAllowSet* functions if it is possible
to set any value in a range, or use the laserAllow*Choices functions if it
is only possible to set specific values).
You may also want to use the override the laserSetName
call so that your own mutexes will get named appropriately. You
can use laserSetDefaultTcpPort to set the default TCP port (which
you should do if the laser normally is connected to over TCP). You
can use laserSetDefaultPortType to the type of port normally used
(so that if a port is passed in we can make a reasonable guess as
to what type, so that people don't always have to pass in a type).
Before you connect you should call laserPullUnsetParams to fill in
the parameters that weren't set explicitly with the default ones in
the .p files. If the maximum range of the laser changes depending
on settings (like on the LMS2xx) you should call
laserSetAbsoluteMaxRange (after you call
laserPullUnsetParamsFromRobot). Implement the blockingConnect,
asyncConnect, disconnect, isConnected, and isTryingToConnect
calls... while calling laserConnect, laserFailedConnect,
laserDisconnectNormally, and laserDisconnectOnError calls to let
the laser base class call the appropriate callbacks. You should
use the laserCheckLostConnection in your runThread to see if the
laser has lost connection (see its documentation for details).
Then after you get your readings call laserProcessReadings to fill
them from the raw buffer into the current and cumulative buffer
(and call the reading callbacks). The internal* calls are all
internal to the base class and shouldn't have to be used by
inheriting classes. After you have created a new laser type you
can add it to Aria by using the Aria::laserAddCreator call and then
it will work like any of the built in laser types (see the
documentation for that function for what the creator needs to do,
and an example is ArLaserCreatorHelper in the ariaUtil.h/cpp
files). Similiarly if you need a new connection type (ie not
serial or tcp) you implement them and then use
Aria::deviceConnectionAddCreator call to add new types so they too
will then be treated the same as the built in Aria ones
(ArDeviceConnectionCreatorHelper in ariaUtil.h/cpp file is the
example for that one).
@since 2.7.0
@ingroup ImportantClasses
@ingroup DeviceClasses
**/
class ArLaser : public ArRangeDeviceThreaded
{
public:
/// Constructor
AREXPORT ArLaser(int laserNumber,
const char *name,
unsigned int absoluteMaxRange,
bool locationDependent = false,
bool appendLaserNumberToName = true);
/// Destructor
AREXPORT virtual ~ArLaser();
/// Connect to the laser and block for the result
AREXPORT virtual bool blockingConnect(void) = 0;
/// Connect to the laser without blocking
AREXPORT virtual bool asyncConnect(void) = 0;
/// Disconnect from the laser
AREXPORT virtual bool disconnect(void) = 0;
/// See if the laser is connected
AREXPORT virtual bool isConnected(void) = 0;
/// See if the laser is trying to connect
AREXPORT virtual bool isTryingToConnect(void) = 0;
/// Sets the numter of seconds without a response until connection assumed lost
AREXPORT virtual void setConnectionTimeoutSeconds(double seconds);
/// Gets the number of seconds without a response until connection assumed lost
AREXPORT virtual double getConnectionTimeoutSeconds(void);
/// Gets the time data was last receieved
ArTime getLastReadingTime(void) { return myLastReading; }
/// Gets the number of laser readings received in the last second
AREXPORT int getReadingCount(void);
/// Sets the device connection
AREXPORT virtual void setDeviceConnection(ArDeviceConnection *conn);
/// Gets the device connection
AREXPORT virtual ArDeviceConnection *getDeviceConnection(void);
/// Sets the position of the sensor on the robot
AREXPORT void setSensorPosition(double x, double y, double th, double z = 0);
/// Sets the position of the sensor on the robot
AREXPORT void setSensorPosition(ArPose pose, double z = 0);
/// Gets if the sensor pose has been set
bool hasSensorPosition(void) { return myHaveSensorPose; }
/// Gets the position of the sensor on the robot
ArPose getSensorPosition(void) { return mySensorPose; }
/// Gets the X position of the sensor on the robot
double getSensorPositionX(void) { return mySensorPose.getX(); }
/// Gets the Y position of the sensor on the robot
double getSensorPositionY(void) { return mySensorPose.getY(); }
/// Gets the Z position of the sensor on the robot (0 is unknown)
double getSensorPositionZ(void) { return mySensorZ; }
/// Gets the heading of the sensor on the robot
double getSensorPositionTh(void) { return mySensorPose.getTh(); }
/// Gets the number of the laser this is
int getLaserNumber(void) { return myLaserNumber; }
/// Sets the log level that informational things are logged at
void setInfoLogLevel(ArLog::LogLevel infoLogLevel)
{ myInfoLogLevel = infoLogLevel; }
/// Gets the log level that informational things are logged at
ArLog::LogLevel getInfoLogLevel(void)
{ return myInfoLogLevel; }
/// Cumulative readings that are this close to current beams are discarded
void setCumulativeCleanDist(double dist)
{
myCumulativeCleanDist = dist;
myCumulativeCleanDistSquared = dist * dist;
}
/// Cumulative readings that are this close to current beams are discarded
double getCumulativeCleanDist(void)
{
return myCumulativeCleanDist;
}
/// Cumulative readings are cleaned every this number of milliseconds
void setCumulativeCleanInterval(int milliSeconds)
{
myCumulativeCleanInterval = milliSeconds;
}
/// Cumulative readings are cleaned every this number of milliseconds
int getCumulativeCleanInterval(void)
{
return myCumulativeCleanInterval;
}
/// Offset for cumulative cleaning
void setCumulativeCleanOffset(int milliSeconds)
{
myCumulativeCleanOffset = milliSeconds;
}
/// Gets the offset for cumulative cleaning
int getCumulativeCleanOffset(void)
{
return myCumulativeCleanOffset;
}
/// Resets when the cumulative cleaning happened (so offset can help)
void resetLastCumulativeCleanTime(void)
{
myCumulativeLastClean.setToNow();
myCumulativeLastClean.addMSec(myCumulativeCleanOffset);
}
/// Adds a series of degree at which to ignore readings (within 1 degree of nearest integer)
AREXPORT bool addIgnoreReadings(const char *ignoreReadings);
/// Adds a degree at which to ignore readings (within 1 degree of nearest integer)
void addIgnoreReading(double ignoreReading)
{ myIgnoreReadings.insert(ArMath::roundInt(ignoreReading)); }
/// Clears the degrees we ignore readings at
void clearIgnoreReadings(void)
{ myIgnoreReadings.clear(); }
/// Gets the list of readings that we ignore
const std::set<int> *getIgnoreReadings(void) const
{ return &myIgnoreReadings; }
/// Gets if the laser is flipped or not
bool getFlipped(void) { return myFlipped; }
/// Sets if the laser is flipped or not
bool setFlipped(bool flipped) { myFlipped = flipped; return true; }
/// Gets the default TCP port for the laser
int getDefaultTcpPort(void) { return myDefaultTcpPort; }
/// Gets the default port type for the laser
const char *getDefaultPortType(void) { return myDefaultPortType.c_str(); }
/// Sees if this class can set the degrees with doubles or not
/**
Gets if this class can set the start and end degrees with doubles.
If so, you can use getStartDegreesMin and getStartDegreesMax to see
the valid values that you can use with setStartDegrees (and see
what was set with getStartDegrees), and getEndDegreesMin and
getEndDegreesMax to see the valid values that you can use with
setEndDegrees (and see what was set with getEndDegrees).
**/
bool canSetDegrees(void) { return myCanSetDegrees; }
/// Gets the minimum value for the start angle
/** @see canSetDegrees **/
double getStartDegreesMin(void) { return myStartDegreesMin; }
/// Gets the maximum value for the start angle
/** @see canSetDegrees **/
double getStartDegreesMax(void) { return myStartDegreesMax; }
/// Gets the start angle
/** @see canSetDegrees **/
double getStartDegrees(void) { return myStartDegrees; }
/// Sets the start angle, it must be between getStartDegreesMin and getStartDegreesMax
/** @see canSetDegrees **/
AREXPORT bool setStartDegrees(double startDegrees);
/// Gets the minimum value for the end angle
/** @see canSetDegrees **/
double getEndDegreesMin(void) { return myEndDegreesMin; }
/// Gets the maximum value for the end angle
/** @see canSetDegrees **/
double getEndDegreesMax(void) { return myEndDegreesMax; }
/// Gets the end angle
/** @see canSetDegrees **/
double getEndDegrees(void) { return myEndDegrees; }
/// Sets the end angle, it must be between getEndDegreesMin and getEndDegreesMax
/** @see canSetDegrees **/
AREXPORT bool setEndDegrees(double endDegrees);
/**
Gets if you can choose the number of degrees
If so, you can call chooseDegrees with one of the strings from
getDegreesChoices, and get the degrees chosen as a string with
getDegreesChoice or get the degrees chosen as a double with
getDegreesChoiceDouble.
**/
bool canChooseDegrees(void) { return myCanChooseDegrees; }
/// Gets the list of range choices
/** @see canChooseDegrees **/
std::list<std::string> getDegreesChoices(void)
{ return myDegreesChoicesList; }
/// Gets a string with the list of degrees choices seperated by |s
/** @see canChooseDegrees **/
const char *getDegreesChoicesString(void)
{ return myDegreesChoicesString.c_str(); }
/// Sets the range to one of the choices from getDegreesChoices
/** @see canChooseDegrees **/
AREXPORT bool chooseDegrees(const char *range);
/// Gets the range that was chosen
/** @see canChooseDegrees **/
const char *getDegreesChoice(void)
{ return myDegreesChoice.c_str(); }
/// Gets the range that was chosen as a double
/** @see canChooseDegrees **/
double getDegreesChoiceDouble(void) { return myDegreesChoiceDouble; }
/// Gets the map of degrees choices to what they mean
/**
This is mostly for the simulated laser
@see canChooseDegrees
@internal
**/
std::map<std::string, double> getDegreesChoicesMap(void)
{ return myDegreesChoices; }
/**
Gets if you can set an increment
**/
bool canSetIncrement(void) { return myCanSetIncrement; }
/// Gets the increment minimum
/** @see canSetIncrement **/
double getIncrementMin(void) { return myIncrementMin; }
/// Gets the increment maximum
/** @see canSetIncrement **/
double getIncrementMax(void) { return myIncrementMax; }
/// Gets the increment
/** @see canSetIncrement **/
double getIncrement(void) { return myIncrement; }
/// Sets the increment
/** @see canSetIncrement **/
AREXPORT bool setIncrement(double increment);
/**
Gets if you can choose an increment.
If so, call chooseIncrement with one of the choices in
getIncrementChoices, and get the choice as a string with
getIncrementChoice or the choice as a string with
getIncrementChoiceDouble.
**/
bool canChooseIncrement(void) { return myCanChooseIncrement; }
/// Gets the list of increment choices
/** @see canChooseIncrement **/
std::list<std::string> getIncrementChoices(void)
{ return myIncrementChoicesList; }
/// Gets a string with the list of increment choices seperated by |s
/** @see canChooseIncrement **/
const char *getIncrementChoicesString(void)
{ return myIncrementChoicesString.c_str(); }
/// Sets the increment to one of the choices from getIncrementChoices
/** @see canChooseIncrement **/
AREXPORT bool chooseIncrement(const char *increment);
/// Gets the increment that was chosen
/** @see canChooseIncrement **/
const char *getIncrementChoice(void) { return myIncrementChoice.c_str(); }
/// Gets the increment that was chosen as a double
/** @see canChooseIncrement **/
double getIncrementChoiceDouble(void) { return myIncrementChoiceDouble; }
/// Gets the map of increment choices to what they mean
/**
This is mostly for the simulated laser
@see canChooseIncrement
@internal
**/
std::map<std::string, double> getIncrementChoicesMap(void)
{ return myIncrementChoices; }
/**
Gets if you can choose units for the laser.
If so, call chooseUnits with one of the choices in
getUnitsChoices, and see what the choice was with
getUnitsChoice.
**/
bool canChooseUnits(void) { return myCanChooseUnits; }
/// Gets the list of units choices
/** @see canChooseUnits **/
std::list<std::string> getUnitsChoices(void)
{ return myUnitsChoices; }
/// Gets a string with the list of units choices seperated by |s
/** @see canChooseUnits **/
const char *getUnitsChoicesString(void)
{ return myUnitsChoicesString.c_str(); }
/// Sets the units to one of the choices from getUnitsChoices
/** @see canChooseUnits **/
AREXPORT bool chooseUnits(const char *units);
/// Gets the units that was chosen
/** @see canChooseUnits **/
const char *getUnitsChoice(void) { return myUnitsChoice.c_str(); }
/**
Gets if you can choose reflectorBits for the laser.
If so, call chooseReflectorBits with one of the choices in
getReflectorBitsChoices, and see what the choice was with
getReflectorBitsChoice.
**/
bool canChooseReflectorBits(void) { return myCanChooseReflectorBits; }
/// Gets the list of reflectorBits choices
/** @see canChooseReflectorBits **/
std::list<std::string> getReflectorBitsChoices(void)
{ return myReflectorBitsChoices; }
/// Gets a string with the list of reflectorBits choices seperated by |s
/** @see canChooseReflectorBits **/
const char *getReflectorBitsChoicesString(void)
{ return myReflectorBitsChoicesString.c_str(); }
/// Sets the reflectorBits to one of the choices from getReflectorBitsChoices
/** @see canChooseReflectorBits **/
AREXPORT bool chooseReflectorBits(const char *reflectorBits);
/// Gets the reflectorBits that was chosen
/** @see canChooseReflectorBits **/
const char *getReflectorBitsChoice(void) { return myReflectorBitsChoice.c_str(); }
/**
Gets if you can set powerControlled for the laser.
If so, call setPowerControlled to set if the power is being controlled
or not, and see what the setting is with getPowerControlled.
**/
bool canSetPowerControlled(void) { return myCanSetPowerControlled; }
/// Sets if the power is controlled
/** @see canChoosePowerControlled **/
AREXPORT bool setPowerControlled(bool powerControlled);
/// Gets if the power is controlled
/** @see canChoosePowerControlled **/
bool getPowerControlled(void) { return myPowerControlled; }
/**
Gets if you can choose startingBaud for the laser.
If so, call chooseStartingBaud with one of the choices in
getStartingBaudChoices, and see what the choice was with
getStartingBaudChoice.
**/
bool canChooseStartingBaud(void) { return myCanChooseStartingBaud; }
/// Gets the list of reflectorBits choices
/** @see canChooseStartingBaud **/
std::list<std::string> getStartingBaudChoices(void)
{ return myStartingBaudChoices; }
/// Gets a string with the list of reflectorBits choices seperated by |s
/** @see canChooseStartingBaud **/
const char *getStartingBaudChoicesString(void)
{ return myStartingBaudChoicesString.c_str(); }
/// Sets the reflectorBits to one of the choices from getStartingBaudChoices
/** @see canChooseStartingBaud **/
AREXPORT bool chooseStartingBaud(const char *reflectorBits);
/// Gets the reflectorBits that was chosen
/** @see canChooseStartingBaud **/
const char *getStartingBaudChoice(void) { return myStartingBaudChoice.c_str(); }
/**
Gets if you can choose autoBaud for the laser.
If so, call chooseAutoBaud with one of the choices in
getAutoBaudChoices, and see what the choice was with
getAutoBaudChoice.
**/
bool canChooseAutoBaud(void) { return myCanChooseAutoBaud; }
/// Gets the list of reflectorBits choices
/** @see canChooseAutoBaud **/
std::list<std::string> getAutoBaudChoices(void)
{ return myAutoBaudChoices; }
/// Gets a string with the list of reflectorBits choices seperated by |s
/** @see canChooseAutoBaud **/
const char *getAutoBaudChoicesString(void)
{ return myAutoBaudChoicesString.c_str(); }
/// Sets the reflectorBits to one of the choices from getAutoBaudChoices
/** @see canChooseAutoBaud **/
AREXPORT bool chooseAutoBaud(const char *reflectorBits);
/// Gets the reflectorBits that was chosen
/** @see canChooseAutoBaud **/
const char *getAutoBaudChoice(void) { return myAutoBaudChoice.c_str(); }
/// Adds a connect callback
void addConnectCB(ArFunctor *functor,
int position = 50)
{ myConnectCBList.addCallback(functor, position); }
/// Adds a disconnect callback
void remConnectCB(ArFunctor *functor)
{ myConnectCBList.remCallback(functor); }
/// Adds a callback for when a connection to the robot is failed
void addFailedConnectCB(ArFunctor *functor,
int position = 50)
{ myFailedConnectCBList.addCallback(functor, position); }
/// Removes a callback for when a connection to the robot is failed
void remFailedConnectCB(ArFunctor *functor)
{ myFailedConnectCBList.remCallback(functor); }
/// Adds a callback for when disconnect is called while connected
void addDisconnectNormallyCB(ArFunctor *functor,
int position = 50)
{ myDisconnectNormallyCBList.addCallback(functor, position); }
/// Removes a callback for when disconnect is called while connected
void remDisconnectNormallyCB(ArFunctor *functor)
{ myDisconnectNormallyCBList.remCallback(functor); }
/// Adds a callback for when disconnection happens because of an error
void addDisconnectOnErrorCB(ArFunctor *functor,
int position = 50)
{ myDisconnectOnErrorCBList.addCallback(functor, position); }
/// Removes a callback for when disconnection happens because of an error
void remDisconnectOnErrorCB(ArFunctor *functor)
{ myDisconnectOnErrorCBList.remCallback(functor); }
/// Adds a callback that is called whenever a laser reading is processed
void addReadingCB(ArFunctor *functor,
int position = 50)
{ myDataCBList.addCallback(functor, position); }
/// Removes a callback that is called whenever a laser reading is processed
void remReadingCB(ArFunctor *functor)
{ myDataCBList.remCallback(functor); }
/// Gets the absolute maximum range on the sensor
unsigned int getAbsoluteMaxRange(void) { return myAbsoluteMaxRange; }
/// Copies the reading count stuff from another laser (for the laser filter)
AREXPORT void copyReadingCount(const ArLaser* laser);
/// override the default to bound the maxrange by the absolute max range
AREXPORT virtual void setMaxRange(unsigned int maxRange);
/// override the default to keep track of its been set or not
AREXPORT virtual void setCumulativeBufferSize(size_t size);
/// Call the laser can implement to make sure the parameters
/// are all okay or set the maximum range (based on the params)
/**
The base laser should make sure all the parameters make sense
according to what was set up as allowed.
This is here for two purposes. The first is to check for
parameters that aren't valid because of something the base class
can't check for. The second is to recalculate whatever the
maximum range of the sensor is based on those settings, and call
setAbsoluteMaxRange if the maximum range has changed based on the
settings.
This is strictly an internal call, mostly for the simulated laser
so that it can more closely match the real laser on complicated
things like the LMS2xx where the settings for the units and bits
affect what the maximum range is.
@internal
**/
AREXPORT virtual bool laserCheckParams(void) { return true; }
/// Applies a transform to the buffers
AREXPORT virtual void applyTransform(ArTransform trans,
bool doCumulative = true);
/// Makes it so we'll apply simple naming to all the lasers
AREXPORT static void useSimpleNamingForAllLasers(void);
protected:
/// Converts the raw readings into the buffers (needs to be called
/// by subclasses)
AREXPORT void laserProcessReadings(void);
/// Returns if the laser has lost connection so that the subclass
/// can do something appropriate
AREXPORT bool laserCheckLostConnection(void);
/// Pulls the unset params from the robot parameter file
AREXPORT bool laserPullUnsetParamsFromRobot(void);
/// Allows setting the degrees the laser uses to anything in a range
AREXPORT void laserAllowSetDegrees(double defaultStartDegrees, double startDegreesMin, double startDegreesMax, double defaultEndDegrees, double endDegreesMin, double endDegreesMax);
/// Allows setting the degrees the laser uses to one of a number of choices
AREXPORT void laserAllowDegreesChoices(const char *defaultDegreesChoice,
std::map<std::string, double> degreesChoices);
/// Allows setting the increment the laser uses to anything in a range
AREXPORT void laserAllowSetIncrement(
double defaultIncrement, double incrementMin, double incrementMax);
/// Allows setting the increment to one of a number of choices
AREXPORT void laserAllowIncrementChoices(const char *defaultIncrementChoice,
std::map<std::string, double> incrementChoices);
/// Allows setting the units the laser will use to one of a number of choices
AREXPORT void laserAllowUnitsChoices(const char *defaultUnitsChoice,
std::list<std::string> unitsChoices);
/// Allows setting the reflector bits the laser will use to one of a
/// number of choices
AREXPORT void laserAllowReflectorBitsChoices(
const char *defaultReflectorBitsChoice,
std::list<std::string> reflectorBitsChoices);
/// Allows setting if the power is controlled or not
AREXPORT void laserAllowSetPowerControlled(bool defaultPowerControlled);
/// Allows setting the starting baud to one of a number of choices
AREXPORT void laserAllowStartingBaudChoices(
const char *defaultStartingBaudChoice,
std::list<std::string> startingBaudChoices);
/// Allows setting the auto baud speed to one of a number of choices
AREXPORT void laserAllowAutoBaudChoices(
const char *defaultAutoBaudChoice,
std::list<std::string> autoBaudChoices);
/// Called when the lasers name is set
AREXPORT virtual void laserSetName(const char *name);
/// Sets the laser's default TCP port
AREXPORT void laserSetDefaultTcpPort(int defaultLaserTcpPort);
/// Sets the laser's default connection port type
AREXPORT void laserSetDefaultPortType(const char *defaultPortType);
/// Sets the absolute maximum range on the sensor
AREXPORT void laserSetAbsoluteMaxRange(unsigned int absoluteMaxRange);
/// Function for a laser to call when it connects
AREXPORT virtual void laserConnect(void);
/// Function for a laser to call when it fails to connects
AREXPORT virtual void laserFailedConnect(void);
/// Function for a laser to call when it disconnects normally
AREXPORT virtual void laserDisconnectNormally(void);
/// Function for a laser to call when it loses connection
AREXPORT virtual void laserDisconnectOnError(void);
// processes the individual reading, helper for base class
AREXPORT void internalProcessReading(double x, double y, unsigned int range,
bool clean, bool onlyClean);
// internal helper function for seeing if the choice matches
AREXPORT bool internalCheckChoice(const char *check, const char *choice,
std::list<std::string> *choices, const char *choicesStr);
// internal helper function for seeing if the choice matches
AREXPORT bool internalCheckChoice(const char *check, const char *choice,
std::map<std::string, double> *choices,
const char *choicesStr, double *choiceDouble);
// internal helper function for building a string for a list of chocies
void internalBuildChoicesString(std::list<std::string> *choices, std::string *str);
// internal helper function for building a string for a list of chocies
void internalBuildChoices(std::map<std::string, double> *choices,
std::string *str, std::list<std::string> *choicesList);
// Function called in laserProcessReadings to indicate that a
// reading was received
AREXPORT virtual void internalGotReading(void);
int myLaserNumber;
ArDeviceConnection *myConn;
ArMutex myConnMutex;
double myTimeoutSeconds;
ArPose mySensorPose;
double mySensorZ;
bool myHaveSensorPose;
double myCumulativeCleanDist;
double myCumulativeCleanDistSquared;
int myCumulativeCleanInterval;
int myCumulativeCleanOffset;
ArTime myCumulativeLastClean;
std::set<int> myIgnoreReadings;
unsigned int myAbsoluteMaxRange;
bool myMaxRangeSet;
bool myCumulativeBufferSizeSet;
bool myFlippedSet;
bool myFlipped;
bool myCanSetDegrees;
double myStartDegreesMin;
double myStartDegreesMax;
bool myStartDegreesSet;
double myStartDegrees;
double myEndDegreesMin;
double myEndDegreesMax;
bool myEndDegreesSet;
double myEndDegrees;
bool myCanChooseDegrees;
std::map<std::string, double> myDegreesChoices;
std::list<std::string> myDegreesChoicesList;
bool myDegreesChoiceSet;
std::string myDegreesChoicesString;
std::string myDegreesChoice;
double myDegreesChoiceDouble;
bool myCanSetIncrement;
double myIncrementMin;
double myIncrementMax;
bool myIncrementSet;
double myIncrement;
bool myCanChooseIncrement;
std::map<std::string, double> myIncrementChoices;
std::list<std::string> myIncrementChoicesList;
std::string myIncrementChoicesString;
bool myIncrementChoiceSet;
std::string myIncrementChoice;
double myIncrementChoiceDouble;
bool myCanChooseUnits;
std::list<std::string> myUnitsChoices;
std::string myUnitsChoicesString;
bool myUnitsChoiceSet;
std::string myUnitsChoice;
bool myCanChooseReflectorBits;
std::list<std::string> myReflectorBitsChoices;
std::string myReflectorBitsChoicesString;
bool myReflectorBitsChoiceSet;
std::string myReflectorBitsChoice;
bool myCanSetPowerControlled;
bool myPowerControlledSet;
bool myPowerControlled;
bool myCanChooseStartingBaud;
std::list<std::string> myStartingBaudChoices;
std::string myStartingBaudChoicesString;
bool myStartingBaudChoiceSet;
std::string myStartingBaudChoice;
bool myCanChooseAutoBaud;
std::list<std::string> myAutoBaudChoices;
std::string myAutoBaudChoicesString;
bool myAutoBaudChoiceSet;
std::string myAutoBaudChoice;
int myDefaultTcpPort;
std::string myDefaultPortType;
ArCallbackList myConnectCBList;
ArCallbackList myFailedConnectCBList;
ArCallbackList myDisconnectOnErrorCBList;
ArCallbackList myDisconnectNormallyCBList;
ArCallbackList myDataCBList;
ArLog::LogLevel myInfoLogLevel;
ArTime myLastReading;
// packet count
time_t myTimeLastReading;
int myReadingCurrentCount;
int myReadingCount;
bool myRobotRunningAndConnected;
static bool ourUseSimpleNaming;
};
#endif // ARRANGEDEVICELASER_H