rosaria/Legacy/Aria/tests/driveHardDirect.cpp
2021-12-16 14:07:59 +00:00

458 lines
10 KiB
C++

/*
Adept MobileRobots Robotics Interface for Applications (ARIA)
Copyright (C) 2004, 2005 ActivMedia Robotics LLC
Copyright (C) 2006, 2007, 2008, 2009, 2010 MobileRobots Inc.
Copyright (C) 2011, 2012, 2013 Adept Technology
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
If you wish to redistribute ARIA under different terms, contact
Adept MobileRobots for information about a commercial version of ARIA at
robots@mobilerobots.com or
Adept MobileRobots, 10 Columbia Drive, Amherst, NH 03031; +1-603-881-7960
*/
// Includes
#include "Aria.h"
// A class that just wraps the robot so that people don't forget
// to unlock and lock the robot when using direct motion commands
class ArDirectMotion
{
public:
// Constructor
ArDirectMotion(ArRobot *robot)
{myRobot = robot;}
// Destructor
~ArDirectMotion() {}
// Wait until the turn times out or has been completed
// within the required range in degrees
void finishTurn(double timeOut, double withinDeg)
{
ArTime start;
while (1)
{
myRobot->lock();
if (myRobot->isHeadingDone(withinDeg))
{
printf("Finished turn\n");
myRobot->unlock();
break;
}
if (start.mSecSince() > timeOut)
{
printf("Turn timed out\n");
myRobot->unlock();
break;
}
myRobot->unlock();
}
}
// Wait until the move times out or has been completed
// within the required range in mm
void finishMove(double timeOut, double withinDist)
{
ArTime start;
while (1)
{
myRobot->lock();
if (myRobot->isMoveDone(withinDist))
{
printf("Finished move\n");
myRobot->unlock();
break;
}
if (start.mSecSince() > timeOut)
{
printf("Turn timed out\n");
myRobot->unlock();
break;
}
myRobot->unlock();
}
}
// Move a distance if that distance + the buffer space
// is clear, otherwise do nothing
void move(double distance, double bufferSpace)
{
myRobot->lock();
if(myRobot->checkRangeDevicesCurrentBox(0, -myRobot->getRobotRadius(),
distance + bufferSpace, myRobot->getRobotRadius())
>= distance + myRobot->getRobotRadius() + bufferSpace)
{
myRobot->move(distance);
}
myRobot->unlock();
}
// Change heading by
void setDeltaHeading(double heading)
{
myRobot->lock();
myRobot->setDeltaHeading(heading);
myRobot->unlock();
}
// Set to absolute heading
void setHeading(double degree)
{
myRobot->lock();
myRobot->setHeading(degree);
myRobot->unlock();
}
// Set the maximum translational velocity
void setTransVelMax(double max)
{
myRobot->lock();
myRobot->setTransVelMax(max);
myRobot->unlock();
}
// Set the translational acceleration
void setTransAccel(double acc)
{
myRobot->lock();
myRobot->setTransAccel(acc);
myRobot->unlock();
}
// Set the translational deceleration
void setTransDecel(double decel)
{
myRobot->lock();
myRobot->setTransDecel(decel);
myRobot->unlock();
}
// Set the rotational acceleration
void setRotAccel(double acc)
{
myRobot->lock();
myRobot->setRotAccel(acc);
myRobot->unlock();
}
// Set the rotational deceleration
void setRotDecel(double decel)
{
myRobot->lock();
myRobot->setRotDecel(decel);
myRobot->unlock();
}
// Set the maximum rotational velocity
void setRotVelMax(double max)
{
myRobot->lock();
myRobot->setRotVelMax(max);
myRobot->unlock();
}
// Set the rotational velocity
void setRotVel(double velocity)
{
myRobot->lock();
myRobot->setRotVel(velocity);
myRobot->unlock();
}
// Set the translational veocity
void setVel(double velocity)
{
myRobot->lock();
myRobot->setVel(velocity);
myRobot->unlock();
}
// Set the velocities of each wheel
void setVel2(double left, double right)
{
myRobot->lock();
myRobot->setVel2(left, right);
myRobot->unlock();
}
// Stop the wheels
void stop()
{
myRobot->lock();
myRobot->stop();
myRobot->unlock();
}
protected:
ArRobot *myRobot;
};
int main(int argc, char** argv)
{
// To simply connect
ArSimpleConnector simpleConnector(&argc, argv);
// The robot
ArRobot robot;
// The key handler
ArKeyHandler keyHandler;
// Sonar
ArSonarDevice sonarDev;
// Laser
//ArSick laserDev;
//Direct Motion Commands
ArDirectMotion motion(&robot);
// Parse the arguments from the simple connector
simpleConnector.parseArgs();
// Some arguments did not parse....
// The program fails to understand and shuts down.
if (argc > 1)
{
simpleConnector.logOptions();
keyHandler.restore();
exit(1);
}
// Initialize Aria
Aria::init();
// Give Aria the key handler
Aria::setKeyHandler(&keyHandler);
// Attach the key handler to the robot
robot.attachKeyHandler(&keyHandler);
// Add the sonar to the robot
robot.addRangeDevice(&sonarDev);
// Add the laser (if we have it) to the robot
//robot.addRangeDevice(&laserDev);
// Connect to the robot
if (!simpleConnector.connectRobot(&robot))
{
printf("Could not connect to robot... exiting\n");
Aria::shutdown();
keyHandler.restore();
return 1;
}
// Run the robot in its own thread
robot.runAsync(false);
//simpleConnector.setupLaser(&laserDev);
//laserDev.runAsync();
/*
if (!laserDev.blockingConnect())
{
printf("Could not connect to SICK laser... exiting\n");
Aria::shutdown();
return 1;
}
*/
// turn on the motors
robot.comInt(ArCommands::ENABLE, 1);
robot.comInt(ArCommands::JOYDRIVE, 1);
//----------------------------------------------------------------
// The robot's settings for this run (feel free to change these)
//----------------------------------------------------------------
// Set the Robot's PIDs
robot.comInt(82, 50); // rotkp
robot.comInt(83, 300); // rotkv
robot.comInt(84, 10); // rotki
robot.comInt(85, 25); // transkp
robot.comInt(86, 600); // transkv
robot.comInt(87, 10); // transki
// Set the robot's velocities and accelerations
motion.setTransVelMax(2999);
motion.setRotVelMax(2999);
motion.setTransAccel(2999);
motion.setTransDecel(2999);
motion.setRotAccel(2999);
motion.setRotDecel(2999);
//----------------------------------------------------------------
// The robot's test pattern for this run (feel free to change this)
//----------------------------------------------------------------
// The test pattern described below
printf("Executing random test pattern\n");
// Some constants for this run
const double TIMOUT_TIME = 5000; // Time(msec) before a movement times out
const double WITHIN_DIST = 50; // If within this(mm) of target, good enough
const double WITHIN_DEG = 10; // If within this(deg) of target, good enough
const double SPACE_BUFFER = 600; // Extra space to give robot
// Distances and angles for pattern
double distance = 100;
double angle = 30;
/*
A figure 8 test pattern
// The initial move
motion.move(distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
while(robot.isRunning())
{
// Turn right
if(!robot.isRunning())break;
motion.setDeltaHeading(-angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
// Move forward
if(!robot.isRunning())break;
motion.move(distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
// Turn right
if(!robot.isRunning())break;
motion.setDeltaHeading(-angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
// Move forward
if(!robot.isRunning())break;
motion.move(distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
// Turn right
if(!robot.isRunning())break;
motion.setDeltaHeading(-angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
// Move forward
if(!robot.isRunning())break;
motion.move(2 * distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
// Turn left
if(!robot.isRunning())break;
motion.setDeltaHeading(angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
// Move forward
if(!robot.isRunning())break;
motion.move(distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
// Turn left
if(!robot.isRunning())break;
motion.setDeltaHeading(angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
// Move forward
if(!robot.isRunning())break;
motion.move(distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
// Turn left
if(!robot.isRunning())break;
motion.setDeltaHeading(angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
// Move forward
if(!robot.isRunning())break;
motion.move(2 * distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
}
*/
while(robot.isRunning())
{
double randomNumber = rand();
int choice = (int)randomNumber % 3;
switch(choice)
{
case 0:
// Turn right
motion.setDeltaHeading(-angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
break;
case 1:
// Turn left
motion.setDeltaHeading(angle);
motion.finishTurn(TIMOUT_TIME, WITHIN_DEG);
break;
case 2:
// Move forward
motion.move(distance, SPACE_BUFFER);
motion.finishMove(TIMOUT_TIME, WITHIN_DIST);
default:
motion.stop();
break;
}
}
// now exit
Aria::shutdown();
return 0;
}