Refactored comments
This commit is contained in:
parent
7e55d72cfe
commit
37feb7c484
@ -1,5 +1,5 @@
|
|||||||
function [Q R] = Alg11(A)
|
function [Q R] = Alg11(A)
|
||||||
% Algorithm 11: QR factorization via Housholder algorithm.
|
% Algorithm 11: QR factorization via Householder algorithm.
|
||||||
|
|
||||||
[m, n] = size(A);
|
[m, n] = size(A);
|
||||||
|
|
||||||
@ -17,5 +17,8 @@ end
|
|||||||
|
|
||||||
R = triu(A)
|
R = triu(A)
|
||||||
|
|
||||||
|
H = tril(A, -1)
|
||||||
|
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -1,16 +1,20 @@
|
|||||||
function A = Alg1_outer_product_gaussian_elimination(A)
|
function A = Alg1_outer_product_gaussian_elimination(A)
|
||||||
% Algorithm 1: Outer Product Gaussian Elimination (Golub, Loan, 3.2.1)
|
% Algorithm 1: Outer Product Gaussian Elimination
|
||||||
% Performs a gaussian eliminaion on a square matrix A.
|
% Performs a gaussian eliminaion on a square matrix A.
|
||||||
|
|
||||||
[m, n] = size(A);
|
[m, n] = size(A);
|
||||||
|
|
||||||
if m ~= n
|
if m ~= n
|
||||||
error('Matrix is not squared!')
|
error('Matrix is not square!')
|
||||||
end
|
end
|
||||||
|
|
||||||
% if det(A) == 0
|
for k = 1:n-1
|
||||||
% error('Matrix is not nonsingular!')
|
if det(A(1:k, 1:k)) < eps
|
||||||
% end
|
error('Matrix is not nonsingular!')
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
% The following algorithm is based on the Algrotihm 3.2.1 from [2].
|
||||||
|
|
||||||
for k = 1 : m-1
|
for k = 1 : m-1
|
||||||
rows = k + 1 : m;
|
rows = k + 1 : m;
|
||||||
|
@ -1,43 +1,47 @@
|
|||||||
function [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
|
function [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
|
||||||
% Algorithm 2: Gaussian Elimination with Complete Pivoting.
|
% Algorithm 2: Gaussian Elimination with Complete Pivoting.
|
||||||
% [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
|
% [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
|
||||||
|
% computes the complete pivoting factorization PAQ = LU.
|
||||||
|
|
||||||
[n, m] = size(A);
|
[m, n] = size(A);
|
||||||
|
|
||||||
if n ~= m
|
if m ~= n
|
||||||
error('Matrix is not squared!')
|
error('Matrix is not square!')
|
||||||
end
|
end
|
||||||
|
|
||||||
% if det(A) == 0
|
% p and q are permutation vectors – respectively rows and columns
|
||||||
% error('Matrix is not nonsingular!')
|
p = 1:m;
|
||||||
% end
|
q = 1:m;
|
||||||
|
|
||||||
p = 1:n;
|
% The following algorithm is based on the Algrotihm 3.4.2 from [2].
|
||||||
q = 1:n;
|
|
||||||
|
|
||||||
for k = 1 : n-1
|
for k = 1 : m-1
|
||||||
i = k:n;
|
i = k:m;
|
||||||
j = k:n;
|
j = k:m;
|
||||||
|
% Find the maximum entry to be the next pivot
|
||||||
[max_val, rows_of_max_in_col] = max(abs(A(i, j)));
|
[max_val, rows_of_max_in_col] = max(abs(A(i, j)));
|
||||||
[~, max_col] = max(max_val);
|
[~, max_col] = max(max_val);
|
||||||
max_row = rows_of_max_in_col(max_col);
|
max_row = rows_of_max_in_col(max_col);
|
||||||
% Assign value of mu and lambda in respect to the main A matrix
|
% Assign value of mu and lambda in respect to the main matrix A
|
||||||
[mi, lm] = deal(max_row+k-1, max_col+k-1);
|
[mi, lm] = deal(max_row+k-1, max_col+k-1);
|
||||||
A([k mi], 1:n) = deal(A([mi k], 1:n));
|
% Interchange the rows and columns of matrix A...
|
||||||
A(1:n, [k lm]) = deal(A(1:n, [lm k]));
|
A([k mi], 1:m) = deal(A([mi k], 1:m));
|
||||||
|
A(1:m, [k lm]) = deal(A(1:m, [lm k]));
|
||||||
|
% ...and respective permutation vectors entries.
|
||||||
p([k, mi]) = p([mi, k]);
|
p([k, mi]) = p([mi, k]);
|
||||||
q([k, lm]) = q([lm, k]);
|
q([k, lm]) = q([lm, k]);
|
||||||
|
|
||||||
% Perform Gaussian elimination with the greatest pivot
|
% Perform Gaussian elimination with the greatest pivot
|
||||||
if A(k, k) ~= 0
|
if A(k, k) ~= 0
|
||||||
rows = k+1 : n;
|
rows = k+1 : m;
|
||||||
A(rows, k) = A(rows, k)/A(k, k);
|
A(rows, k) = A(rows, k)/A(k, k);
|
||||||
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
|
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
I = eye(n);
|
I = eye(m);
|
||||||
U = triu(A);
|
U = triu(A);
|
||||||
L = tril(A, -1) + I;
|
L = tril(A, -1) + I;
|
||||||
P = I(p, :);
|
P = I(p, :);
|
||||||
Q = I(:, q);
|
Q = I(:, q);
|
||||||
|
|
||||||
|
end
|
@ -1,18 +1,29 @@
|
|||||||
function b = Alg3_forward_substitution(L, b)
|
function b = Alg3_forward_substitution(L, b)
|
||||||
% Algorithm 3: Forward Substitution (Golub, Loan, Alg. 3.1.1)
|
% Algorithm 3: Forward Substitution
|
||||||
|
% b = Alg3_forward_substitution(L, b) overwrites b with the solution to
|
||||||
|
% Lx = b.
|
||||||
|
|
||||||
[m, n] = size(L);
|
[m, n] = size(L);
|
||||||
|
|
||||||
if m ~= n
|
if m ~= n
|
||||||
error('Matrix is not squar!')
|
error('Matrix is not square!')
|
||||||
end
|
end
|
||||||
|
|
||||||
if length(b) ~= m
|
if length(b) ~= m
|
||||||
error('Vector b has wrong length!')
|
error('Vector b has wrong length!')
|
||||||
end
|
end
|
||||||
|
|
||||||
|
if det(L) < eps
|
||||||
|
error("Matrix is not nonsingular!")
|
||||||
|
end
|
||||||
|
|
||||||
|
% The following algorithm is based on the Algrotihm 3.1.1 from [2].
|
||||||
|
|
||||||
|
% b(m, :) so that matrices are also accepted
|
||||||
b(1, :) = b(1, :)/L(1,1);
|
b(1, :) = b(1, :)/L(1,1);
|
||||||
for i = 2:m
|
for i = 2:m
|
||||||
b(i, :) = (b(i, :) - L(i, 1:i-1)*b(1:i-1, :))/L(i, i);
|
b(i, :) = (b(i, :) - L(i, 1:i-1)*b(1:i-1, :))/L(i, i);
|
||||||
end
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -1,11 +1,12 @@
|
|||||||
function b = Alg4_back_substitution(U,b)
|
function b = Alg4_back_substitution(U,b)
|
||||||
% Argorithm 4: Back Substitution (Golub, Loan, Alg. 3.1.2)
|
% Argorithm 4: Back Substitution
|
||||||
% Returns vetor b with solution to he Ux = b.
|
% b = Alg4_back_substitution(U,b) returns vetor b with solution to the
|
||||||
|
% Ux = b.
|
||||||
|
|
||||||
[m, n] = size(U);
|
[m, n] = size(U);
|
||||||
|
|
||||||
if U ~= triu(U)
|
if U ~= triu(U)
|
||||||
error('Matrix is not upper triangular!')
|
error('Matrix U is not upper triangular!')
|
||||||
end
|
end
|
||||||
|
|
||||||
if m ~= n
|
if m ~= n
|
||||||
@ -16,12 +17,14 @@ if length(b) ~= m
|
|||||||
error('Vector b has wrong length!')
|
error('Vector b has wrong length!')
|
||||||
end
|
end
|
||||||
|
|
||||||
% if det(U) < 0.001
|
if det(U) < eps
|
||||||
% error('Matrix is not nonsingular!')
|
error('Matrix is not nonsingular!')
|
||||||
% end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
% The following algorithm is based on the Algrotihm 3.1.2 from [2].
|
||||||
|
|
||||||
% b(m, :) so that matrices are also accepted
|
% b(m, :) so that matrices are also accepted
|
||||||
|
|
||||||
b(m, :) = b(m, :)/U(m, m);
|
b(m, :) = b(m, :)/U(m, m);
|
||||||
for i = m-1:-1:1
|
for i = m-1:-1:1
|
||||||
b(i, :) = (b(i, :) - U(i, i+1 : m)*b(i+1 : m, :))/U(i, i);
|
b(i, :) = (b(i, :) - U(i, i+1 : m)*b(i+1 : m, :))/U(i, i);
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
function A = Alg5_gauss_jordan_elimination(A)
|
function A = Alg5_gauss_jordan_elimination(A)
|
||||||
% Algorithm 5: Gauss-Jordan Elimination
|
% Algorithm 5: Gauss-Jordan Elimination
|
||||||
% Argument A is an augmented matrix
|
% A = Alg5_gauss_jordan_elimination(A) performs Gauss-Jordan elimination
|
||||||
|
% on an augmented matrix A.
|
||||||
|
|
||||||
[m, n] = size(A);
|
[m, n] = size(A);
|
||||||
|
|
||||||
@ -16,4 +17,5 @@ for k = 1 : m
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
end
|
end
|
@ -2,38 +2,38 @@ function A = Alg6_RREF(A)
|
|||||||
% Algorithm 6: Reduced Row Echelon Form (RREF)
|
% Algorithm 6: Reduced Row Echelon Form (RREF)
|
||||||
% A = Alg6_RREF(A) returns RREF of matrix A.
|
% A = Alg6_RREF(A) returns RREF of matrix A.
|
||||||
|
|
||||||
[M, N] = size(A);
|
[m, n] = size(A);
|
||||||
|
|
||||||
n = 0;
|
j = 0;
|
||||||
|
|
||||||
for m = 1 : M
|
for k = 1 : m
|
||||||
n = n + 1;
|
j = j + 1;
|
||||||
if n > N
|
if j > n
|
||||||
break
|
break
|
||||||
end
|
end
|
||||||
% We want the left-most coefficient to be 1 (pivot)
|
% We want the left-most coefficient to be 1 (pivot)
|
||||||
row = A(m, :);
|
row = A(k, :);
|
||||||
if row(m) == 0
|
if row(k) == 0
|
||||||
n = n + 1;
|
j = j + 1;
|
||||||
end
|
end
|
||||||
row = row/row(n);
|
row = row/row(j);
|
||||||
A(m, :) = row;
|
A(k, :) = row;
|
||||||
|
|
||||||
for i = 1 : M
|
for i = 1 : m
|
||||||
if i ~= m
|
if i ~= k
|
||||||
A(i, :) = A(i, :)-(A(i, n))*row;
|
A(i, :) = A(i, :)-(A(i, j))*row;
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
for i = m + 1 : M
|
for i = k + 1 : m
|
||||||
A(i:end, m+1:end); % Partial matrix (in which we are looking for non-zero pivots)
|
A(i:end, k+1:end); % Partial matrix (in which we are looking for non-zero pivots)
|
||||||
A(i:end, m+1); % Left-most column
|
A(i:end, k+1); % Left-most column
|
||||||
if ~any(A(i:end, m+1)) % If the left-most column has only zeros check the next one
|
if ~any(A(i:end, k+1)) % If the left-most column has only zeros check the next one
|
||||||
m = m + 1;
|
k = k + 1;
|
||||||
end
|
end
|
||||||
A(i:end, m+1:end);
|
A(i:end, k+1:end);
|
||||||
if A(i, m+1) == 0
|
if A(i, k+1) == 0
|
||||||
non_zero_row = find(A(i:end,m+1), 1);
|
non_zero_row = find(A(i:end,k+1), 1);
|
||||||
if isempty(non_zero_row)
|
if isempty(non_zero_row)
|
||||||
continue
|
continue
|
||||||
end
|
end
|
||||||
|
8
Direct Methods for Solving Linear Systems/README.md
Normal file
8
Direct Methods for Solving Linear Systems/README.md
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
# Direct Methods for Solving Linear Systems
|
||||||
|
|
||||||
|
## Bibliography
|
||||||
|
|
||||||
|
References in the code comments are represented by `[number]`:
|
||||||
|
|
||||||
|
- 1
|
||||||
|
- 2 – Golub, van Loan, Matrix Computations, 3rd edition
|
Loading…
Reference in New Issue
Block a user