This commit is contained in:
Sergiusz Warga 2023-03-11 20:08:05 +01:00
parent 8cfa2c9c18
commit a3fa9eb91d
66 changed files with 1516 additions and 10 deletions

3
.gitignore vendored
View File

@ -1,2 +1,5 @@
# LaTeX
build
# MATLAB
*.asv

View File

@ -23,8 +23,6 @@ b = P*b;
y = Alg3(L, b); % Forward substitution
x = Q*Alg4(U, y) % Backward substitution
%% Problem 4
A = [0.835, 0.667;

View File

@ -0,0 +1,10 @@
## Lab 1 - Direct Methods for Solving Linear Systems
### Bibliography
References in the code comments are represented by `[number]`:
- 1
- 2 Golub, van Loan, Matrix Computations, 3rd edition

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 MiB

View File

@ -0,0 +1,26 @@
function A = Alg1(A)
% Algorithm 1: Outer Product Gaussian Elimination
% Performs a gaussian eliminaion on a square matrix A.
[m, n] = size(A);
if m ~= n
error('Matrix is not square!')
end
for k = 1:n-1
if det(A(1:k, 1:k)) < eps
error('Matrix is not nonsingular!')
end
end
% The following algorithm is based on the Algrotihm 3.2.1 from [2].
for k = 1 : m-1
rows = k + 1 : m;
A(rows, k) = A(rows, k)/A(k, k);
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
end
end

View File

@ -0,0 +1,24 @@
function A = Alg10(A)
% Algorithm 10: Cholesky (Banachiewicz) factorization.
% Matrix A has to be symmetric and positive-definite:
% all d(i, i) > 0 for A = LDL^T.
% We are using Outer product Version (Golub, Load, Alg. 4.2.2), which
% computes lower triangular G, such that A = G*G^T
[m, n] = size(A);
if m ~= n
error('Matrix is not square!')
end
for k = 1:m
A(k,k) = sqrt(A(k,k));
A(k+1:n, k) = A(k+1:n, k)/A(k,k);
for j = k+1:n
A(j:n, j) = A(j:n, j) - A(j:n, k)*A(j, k);
end
end
A = tril(A);
end

View File

@ -0,0 +1,22 @@
function [Q R] = Alg11(A)
% Algorithm 11: QR factorization via Householder transformation.
[m, n] = size(A);
if ~ (m>=n)
error("m has to be greater or equal n!")
end
for j = 1:n
[v, beta] = householder(A(j:m, j))
A(j:m, j:n) = (eye(m-j+1)-beta*(v*v.'))*A(j:m, j:n)
if j < m
A(j+1:m, j) = v(2:m-j+1)
end
end
R = triu(A(1:n, 1:n))
Q = tril(A, -1)
end

View File

@ -0,0 +1,21 @@
function [Q, R] = Alg12(A)
% Algorithm 11 - The QR algorithm by the Householder transformation
% [Q, R] = Alg12(A)
% Based on [GVL96]: Algorithm 5.2.4
[m, n] = size(A);
if ~ (m >= n)
error("m has to be greater or equal n!")
end
Q = eye(m, m);
for j = 1:n
for i = m:-1:j+1
[c, s] = Givens(A(i-1, j), A(i, j));
A(i-1:i, j:n) = [c s; -s c]'*A(i-1:i, j:n);
Q(:, i-1:i) = Q(:, i-1:i)*[c s ; -s c];
end
end
R = A;
end

View File

@ -0,0 +1,19 @@
function [Q, R] = Alg13(A)
% Algorithm 13: The QR algorithm by the Gram-Schmidt ortogonalization
% [Q, R] = Alg13(A)
% Based on [GVL96]: Section 5.2.8
[m,n] = size(A);
if ~ (m >= n)
error("m has to be greater or equal n!")
end
R = zeros(n, n);
Q = zeros(m, n);
for k = 1:n
R(k, k) = norm(A(:, k));
Q(:, k) = A(:, k)/R(k, k);
R(k, k+1:n) = Q(:, k)'*A(:, k+1:n);
A(:, k+1:n) = A(:, k+1:n) - Q(:, k)*R(k, k+1:n);
end

View File

@ -0,0 +1,47 @@
function [P, Q, L, U] = Alg2(A)
% Algorithm 2: Gaussian Elimination with Complete Pivoting.
% [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
% computes the complete pivoting factorization PAQ = LU.
[m, n] = size(A);
if m ~= n
error('Matrix is not square!')
end
% p and q are permutation vectors - respectively rows and columns
p = 1:m;
q = 1:m;
% The following algorithm is based on the Algrotihm 3.4.2 from [2].
for k = 1 : m-1
i = k:m;
j = k:m;
% Find the maximum entry to be the next pivot
[max_val, rows_of_max_in_col] = max(abs(A(i, j)));
[~, max_col] = max(max_val);
max_row = rows_of_max_in_col(max_col);
% Assign value of mu and lambda in respect to the main matrix A
[mi, lm] = deal(max_row+k-1, max_col+k-1);
% Interchange the rows and columns of matrix A...
A([k mi], 1:m) = deal(A([mi k], 1:m));
A(1:m, [k lm]) = deal(A(1:m, [lm k]));
% ...and respective permutation vectors entries.
p([k, mi]) = p([mi, k]);
q([k, lm]) = q([lm, k]);
% Perform Gaussian elimination with the greatest pivot
if A(k, k) ~= 0
rows = k+1 : m;
A(rows, k) = A(rows, k)/A(k, k);
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
end
end
I = eye(m);
U = triu(A);
L = tril(A, -1) + I;
P = I(p, :);
Q = I(:, q);
end

View File

@ -0,0 +1,29 @@
function b = Al3(L, b)
% Algorithm 3: Forward Substitution
% b = Alg3_forward_substitution(L, b) overwrites b with the solution to
% Lx = b.
[m, n] = size(L);
if m ~= n
error('Matrix is not square!')
end
if length(b) ~= m
error('Vector b has wrong length!')
end
if det(L) < eps
error("Matrix is not nonsingular!")
end
% The following algorithm is based on the Algrotihm 3.1.1 from [2].
% b(m, :) so that matrices are also accepted
b(1, :) = b(1, :)/L(1,1);
for i = 2:m
b(i, :) = (b(i, :) - L(i, 1:i-1)*b(1:i-1, :))/L(i, i);
end
end

View File

@ -0,0 +1,33 @@
function b = Alg4(U,b)
% Argorithm 4: Back Substitution
% b = Alg4_back_substitution(U,b) returns vetor b with solution to the
% Ux = b.
[m, n] = size(U);
if U ~= triu(U)
error('Matrix U is not upper triangular!')
end
if m ~= n
error('Matrix is not squared!')
end
if length(b) ~= m
error('Vector b has wrong length!')
end
% if det(U) < eps
% error('Matrix is not nonsingular!')
% end
% The following algorithm is based on the Algrotihm 3.1.2 from [2].
% b(m, :) so that matrices are also accepted
b(m, :) = b(m, :)/U(m, m);
for i = m-1:-1:1
b(i, :) = (b(i, :) - U(i, i+1 : m)*b(i+1 : m, :))/U(i, i);
end
end

View File

@ -0,0 +1,21 @@
function A = Alg5(A)
% Algorithm 5: Gauss-Jordan Elimination
% A = Alg5_gauss_jordan_elimination(A) performs Gauss-Jordan elimination
% on an augmented matrix A.
[m, ~] = size(A);
for k = 1 : m
row = A(k, :);
row = row/row(k);
A(k, :) = row;
for i = 1 : m
if i ~= k && A(i, k) ~= 0
A(i, :) = A(i, :)-(A(i, k))*row;
end
end
end
end

View File

@ -0,0 +1,46 @@
function A = Alg6_RREF(A)
% Algorithm 6: Reduced Row Echelon Form (RREF)
% A = Alg6_RREF(A) returns RREF of matrix A.
[m, n] = size(A);
j = 0;
for k = 1 : m
j = j + 1;
if j > n
break
end
% We want the left-most coefficient to be 1 (pivot)
row = A(k, :);
if row(k) == 0
j = j + 1;
end
row = row/row(j);
A(k, :) = row;
for i = 1 : m
if i ~= k
A(i, :) = A(i, :)-(A(i, j))*row;
end
end
for i = k + 1 : m
A(i:end, k+1:end); % Partial matrix (in which we are looking for non-zero pivots)
A(i:end, k+1); % Left-most column
if ~any(A(i:end, k+1)) % If the left-most column has only zeros check the next one
k = k + 1;
end
A(i:end, k+1:end);
if A(i, k+1) == 0
non_zero_row = find(A(i:end,k+1), 1);
if isempty(non_zero_row)
continue
end
A([i, i+non_zero_row-1], :) = deal(A([i+non_zero_row-1, i], :));
end
end
end
end

View File

@ -0,0 +1,35 @@
function [L, U] = Alg7(A)
% LU Factorization without pivoting
% [L, U] = Alg7(A) decomposes matrix A using Crout's algorithm into
% U - upper triangular matrix and L - unit lower triangular matrix
% such that A = LU.
[m, n] = size(A);
% This solution is mathematically correct, however computationaly
% inefficient.
%
% A = Alg1_outer_product_gaussian_elimination(A);
%
% U = triu(A);
% L = tril(A, -1) + eye(m);
% Instead, we should use the Crout's algorithm
L = zeros(m, n);
U = eye(m, n);
for k = 1:n
for j = k : n
U(k, j) = A(k, j) - dot(L(k, 1:k-1), U(1:k-1, j));
end
for i = k:n
L(i, k) = (A(i, k) - dot(L(i,1:k-1), U(1:k-1, k))) / U(k,k);
end
end
end

View File

@ -0,0 +1,34 @@
function [L, U, P] = Alg8(A)
% LU Factorization with partial pivoting
% [L, U, P] = Alg8(A) decomposes matrix A using Crout's algorithm into
% U - upper triangular matrix and L - unit lower triangular matrix
% using partial pivoting, interchanging A's rows, such that AP = LU.
[m, n] = size(A);
L = zeros(m, n);
U = eye(m, n);
P = eye(m, n);
for k = 1:m
if A(k, k) == 0
non_zero_col = find(A(k, :), 1);
A(:, [k non_zero_col]) = deal(A(:, [non_zero_col k]));
P(:, [k non_zero_col]) = deal(P(:, [non_zero_col k]));
end
end
for k = 1:n
for j = k : n
U(k, j) = A(k, j) - dot(L(k, 1:k-1), U(1:k-1, j));
end
for i = k:n
L(i, k) = (A(i, k) - dot(L(i,1:k-1), U(1:k-1, k))) / U(k,k);
end
end
end

View File

@ -0,0 +1,13 @@
@misc{Zdunek,
author = {Zdunek, Rafał},
title = {Lecture notes in {Numerical Algorithms}},
year = {2021}
}
@Book{GoluVanl96,
Title = {Matrix Computations},
Author = {Golub, Gene H. and Van Loan, Charles F.},
Publisher = {The Johns Hopkins University Press},
Year = {1996},
Edition = {Third}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 287 KiB

View File

@ -0,0 +1,108 @@
\documentclass[a4paper]{article}
\usepackage{WUST-AAE-NMaO-Report}
\usepackage{natbib}
\usepackage{amsmath}
% \usepackage{amssymb}
% \usepackage[polish,main=english]{babel}
% \usepackage{titlesec}
% \usepackage{vmargin}
% \usepackage{graphicx}
% \graphicspath{{images/}}
% \usepackage{fancyhdr}
% \usepackage{systeme}
% \usepackage{xcolor}
% \usepackage{indentfirst}
% \usepackage{xspace}
% \newcommand{\MATLAB}{\textsc{Matlab}\xspace}
% \usepackage{listings}
% \usepackage{matlab-prettifier}
% \usepackage{hyperref}
% \usepackage{multicol}
% \newcommand{\sectionbreak}{\clearpage}
% \setmarginsrb{3 cm}{2.5 cm}{3 cm}{2.5 cm}{1 cm}{1.5 cm}{1 cm}{1.5 cm}
% Augmented matrix
% \newenvironment{amatrix}[2]{%
% \left[\begin{array}{@{}*{#1}{c} | c *{#2}{c} @{}}
% }{%
% \end{array}\right]
% }
% Bold letters in matrices
% \newcommand{\matr}[1]{\mathbf{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Numerical Algorithms Report 1: Direct Methods for Solving Linear Systems}
\author{Sergiusz Warga 230757}
\date{\today}
\reporttutor{dr hab. inż. Rafał Zdunek}
\begin{document}
\maketitle
\tableofcontents
\pagebreak
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Problems calculations}
\input{problems/Problem_1}
% \input{problems/Problem2}\\
% \input{problems/Problem3}\\
% \input{problems/Problem4}\\
% \input{problems/Problem5}\\
% \input{problems/Problem6}\\
% \input{problems/Problem7}\\
% \input{problems/Problem8}\\
% \input{problems/Problem9}\\
% \input{problems/Problem10}\\
% \input{problems/Problem11}\\
% \input{problems/Problem12}\\
% \input{problems/Problem13}\\
% \input{problems/Problem14}\\
% \input{problems/Problem15}
% \section{Algorithms}
% \subsection{Algorithm 1 -- Gaussian elimination}\label{algorithm:1}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg1.m}
% \subsection{Algorithm 2 -- Gaussian elimination with Complete Pivoting}\label{algorithm:2}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg2.m}
% \subsection{Algorithm 3 -- Forward Substitution}\label{algorithm:3}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg3.m}
% \subsection{Algorithm 4 -- Back Substitution}\label{algorithm:4}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg4.m}
% \subsection{Algorithm 5 -- The Gauss-Jordan elimination algorithm}\label{algorithm:5}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg5.m}
% \subsection{Algorithm 6 -- The RREF algorithm}\label{algorithm:6}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg6_RREF.m}
% \subsection{Algorithm 7 -- The LU factorization without pivoting}\label{algorithm:7}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg7.m}
% \subsection{Algorithm 8 -- The LU factorization with partial pivoting}\label{algorithm:8}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg8.m}
% % \subsection{Algorithm 9 -- A family of the Cholesky factorization algorithms}\label{algorithm:9}
% % \lstinputlisting[style=Matlab-editor]{algorithms/Alg9.m}
% \stepcounter{subsection}
% \subsection{Algorithm 10 -- The Cholesky factorization}\label{algorithm:10}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg10.m}
% \subsection{Algorithm 11 -- The QR algorithm by the Householder transformation}\label{algorithm:11}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg11.m}
% \subsection{Algorithm 12 -- The QR algorithm by the Givens rotations}\label{algorithm:12}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg12.m}
% \subsection{Algorithm 13 -- The QR algorithm by the Gram-Schmidt orthogonalization}\label{algorithm:13}
% \lstinputlisting[style=Matlab-editor]{algorithms/Alg13.m}
%%%%%%%%%%%%%%%%%%%
%% BIBLIOGRAPHY %%%
%%%%%%%%%%%%%%%%%%%
\clearpage
\nocite{Zdunek, GoluVanl96}
\bibliographystyle{alpha}
\bibliography{bibliography}
\end{document}

View File

@ -0,0 +1,13 @@
A = [2, -1, 0, 0;
-1, 2, -1, 0;
0, -1, 2, -1;
0, 0, -1, 2];
b = [0;0;0;5];
B = Alg5([A b])
B =
1.0000 0 0 0 1.0000
0 1.0000 0 0 2.0000
0 0 1.0000 0 3.0000
0 0 0 1.0000 4.0000

View File

@ -0,0 +1,58 @@
\subsection{Problem 10}
Transform the following matrix to the RREF, determine $rank(\mathbf{A})$ and identify the columns corresponding to the basic and free variables.
\begin{equation*}
\matr{A} =
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
2 & 4 & 4 & 6 & 2 \\
3 & 6 & 6 & 9 & 6 \\
1 & 2 & 4 & 5 & 3
\end{bmatrix}
\end{equation*}
Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse.
\subsubsection*{Solution}
\begin{equation*}
\begin{split}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
2 & 4 & 4 & 6 & 2 \\
3 & 6 & 6 & 9 & 6 \\
1 & 2 & 4 & 5 & 3
\end{bmatrix}
\xrightarrow{\substack{R_2 - 2R_1 \\ R_3 - 3R_1 \\ R_4 - R_1}}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 2 & 2 & 2
\end{bmatrix}
\xrightarrow{pivot}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\\
\xrightarrow{\substack{R_2 / 2 \\ R_3 / 3}}
\begin{bmatrix}
1 & 2 & 2 & 3 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\substack{R_1 - R_3 \\ R_2 - R_3}}
\begin{bmatrix}
1 & 2 & 2 & 3 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\end{split}
\end{equation*}
Rank of the given matrix is equal to 3.

View File

@ -0,0 +1,17 @@
\subsection{Problem 11}
Compute the LU factorization for
\begin{equation*}
\matr{A} =
\begin{bmatrix}
\phantom{-}1 & \phantom{-}3 & 3 & 2 \\
\phantom{-}2 & \phantom{-}6 & 9 & 5 \\
-1 & -3 & 3 & 0
\end{bmatrix}
\end{equation*}
Determine a set of basic variables and a set of free variables, and find a homogeneous solution to $\mathbf{Ax = 0}$. What is the rank of $\mathbf{A}$?

View File

@ -0,0 +1,14 @@
\subsection{Problem 12}
Compute the QR factorization of the matrix:
\begin{equation*}
\matr{A} =
\begin{bmatrix}
0 & -1 & -3 \\
0 & \phantom{-}0 & -2 \\
0 & -2 & -1
\end{bmatrix}
\end{equation*}
How many flops (multiplications/divisions, additions/subtractions) are needed to perform the QR factorization with the Householder transformations and Givens rotations?

View File

@ -0,0 +1,3 @@
\subsection{Problem 13}
Let $\mathbf{Ax = b}$ , where $A = I_N \bigotimes C^TC$, the symbol $\bigotimes$ denotes the Kronecker product, $I_N \in R^{N \times N}$ is an identity matrix, $C \in R^{M \times M}$ is a random matrix with a uniform distribution, $M = 100$, and $N=50$, and $x \square N(0, I_{MN})$. Find the direct method that solves the above system of linear equations with the lowest computational cost. Estimate the cost with a roughly calculated number of flops and with the elapsed time.

View File

@ -0,0 +1,4 @@
\subsection{Problem 14}
Solve $\mathbf{Ax=b}$, where $A \in R ^ {10 \times 10}$ is the Hilbert matrix, and, $x \square N(0, I_{10})$ with the Gaussian elimination in Matlab. Then make a small change in an entry of $\mathbf{A}$ or $\mathbf{b}$, and compare the solutions.

View File

@ -0,0 +1,59 @@
\subsection{Problem 15}
Find the currents in the circuit, assuming all resistances are 10 Ohm.
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{images/electro.png}
\label{fig:electro}
\end{figure}
\subsubsection*{Solution}
\begin{equation*}
\left\{\begin{matrix}
I_{L1}(R_1 + R_2) - I_{L3}(R_2) = -E_2\\
I_{L2}(R_3 + R_4) - I_{L3}(R_3) = E_2\\
-I_{L1}(R_2) - I_{L2}(R_3) + I_{L3}(R_2 + R_3) = -E_1
\end{matrix}\right.
\end{equation*}
After substitution we have:
\begin{equation*}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix} =
\begin{amatrix}{3}{1}
20 & 0 & -10 & -10 \\
0 & 20 & -10 & 10 \\
-10 & -10 & 20 & -20
\end{amatrix}
\xrightarrow[magic]{}
\begin{amatrix}{3}{1}
1 & 0 & 0 & -1.5 \\
0 & 1 & 0 & -0.5 \\
0 & 0 & 1 & -2
\end{amatrix}
\end{equation*}
\begin{equation*}
\left\{\begin{matrix}
I_1 = -I_{L3} \\
I_2 = -I_{L1} + I_{L2} \\
I_3 = I_{L1} - I_{L3} \\
I_4 = -I_{L1} \\
I_5 = I_{L2} - I_{L3} \\
I_6 = -I_{L2}
\end{matrix}\right.
\end{equation*}
\begin{equation*}
\left\{\begin{matrix}
I_1 = 2 \\
I_2 = 1 \\
I_3 = 0.5 \\
I_4 = 1.5 \\
I_5 = 1.5 \\
I_6 = 0.5
\end{matrix}\right.
\end{equation*}

View File

@ -0,0 +1,15 @@
A = [1, 1, 1;
1, 1, 2;
1, 2, 2];
b = [1;2;1];
[P, Q, L, U] = Alg2(A);
% PAQ = LU
% Ly = b and Ux = y
y = Alg3(L, P*b); % Forward substitution
x = Q*Alg4(U, y) % Backward substitution
x =
1
-1
1

View File

@ -0,0 +1,52 @@
\subsection{Problem 2}\label{problem:2}
Solve the following system of linear equations using the Gaussian elimination with pivoting:
\begin{equation*}
\systeme{x_1+x_2+x_3=1,x_1+x_2+2x_3=2,x_1+2x_2+2x_3=1}
\end{equation*}
Explain why the Gaussian elimination without pivoting does not work.
\subsubsection*{Mathematics}
As was stated at the end of the theoretical introduction to the previous problem, Gaussian Elimination algorithms require the diagonal entry to be different than zero (to not normalize the row dividing by zero). While in manual computations such a division would be noticed, in \MATLAB their result is \texttt{Inf} and algorithm proceeds with replacing subsequent coefficients with this value, resulting in gibberish output. With pivoting this behaviour can be avoided. The basic idea is to find a maximum absolute value in the zeroed column below the pivot and interchange their rows. This is called a partial pivoting. Searching in the whole sub-matrix spanned between pivot and $A_{n,m}$, therefore interchanging not only rows but also columns, is called a complete pivoting.
\subsubsection*{Solution}
\begin{equation*}
\begin{split}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix} =
\begin{amatrix}{3}{1}
1 & 1 & 1 & 1\\
1 & 1 & 2 & 2\\
1 & 2 & 2 & 1
\end{amatrix} \xrightarrow[\substack{R_2-R_1\\R_3-R_1}]{}
\begin{amatrix}{3}{1}
1 & 1 & 1 & 1\\
0 & 0 & 1 & 1\\
0 & 1 & 1 & 0
\end{amatrix} \xrightarrow[R_2\leftrightarrow R_3]{}
\begin{amatrix}{3}{1}
1 & 1 & 1 & 1\\
0 & 1 & 1 & 0\\
0 & 0 & 1 & 1
\end{amatrix}\rightarrow\\
\rightarrow
\systeme{x_1+x_2+x_3=1,x_2+x_3=0,x_3=1}
\rightarrow
\systeme{x_1+x_2+x_3=\phantom{-}1,x_2=-1,x_3=\phantom{-}1}
\rightarrow
\begin{cases}
x_1=\phantom{-}1\\
x_2=-1\\
x_3=\phantom{-}1
\end{cases}
\end{split}
\end{equation*}
To verify manual solution the Algorithm~\ref{algorithm:2} was used. As is explained in detail in~\cite[section 3.4.2]{GoluVanl96} it transforms matrix $\matr{P}\matr{A}\matr{U}$ into a form from which lower unit triangular and upper triangular matrices may be extracted, so that:
\begin{align*}
\matr{P}\matr{A}\matr{U} &= \matr{L}\matr{U} & \matr{A}\matr{x}&=\matr{b}
\end{align*}
therefore
\begin{align*}
\matr{A}&=\matr{P^T}\matr{L}\matr{U}\matr{Q^T} & \matr{P^T}\matr{L}\matr{U}\matr{Q^T}\matr{x} &= \matr{b}\\
& & \matr{L}\matr{U}\matr{Q^T}\matr{x} &= \matr{P}\matr{b}
\end{align*}
\lstinputlisting[style=Matlab-editor]{problems/Problem2.m}

View File

@ -0,0 +1,140 @@
\subsection{Problem 3}
Solve the system:
\begin{equation*}
\systeme{0.0001x_1+x_2=1,x_1+x_2=2}
\end{equation*}
with the Gaussian elimination with and without pivoting at the round-off error limited to 3 significant digits. Compute the condition number of the system matrix.
\subsubsection*{Mathematics}
Not only pivoting helps with $a_{ii}=0$ problem but, by choosing the biggest entry, ensures the stability of the LU factorization. As explained in detail in~~\cite[section 3.3]{GoluVanl96} for the factorization errors to be small, the diagonal entries of $\matr{U}$ matrix has to be small. Please note that in both solutions and condition number computations precision was limited to 3 significant digits.
\subsubsection*{Solution without pivoting}
\begin{equation*}
\begin{split}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix} =
\begin{amatrix}{2}{1}
10^{-4} & 1 & 1\\
1 & 1 & 2
\end{amatrix}
\xrightarrow[\substack{R_2-10^{4}R_1}]{}
\begin{amatrix}{2}{1}
10^{-4} & 1 & 1\\
0 & -10^{4} & -10^{4}
\end{amatrix}
\end{split}
\end{equation*}
gives us
\begin{equation*}
\begin{cases}
x_1=0\\
x_2=1\\
\end{cases}
\end{equation*}
which is obviously contradictory to $R_2$.
\subsubsection*{Solution with pivoting}
\begin{equation*}
\begin{split}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix} =
\begin{amatrix}{2}{1}
10^{-4} & 1 & 1\\
1 & 1 & 2
\end{amatrix}
\xrightarrow[R_1\leftrightarrow R_2]{}
\begin{amatrix}{2}{1}
1 & 1 & 2 \\
10^{-4} & 1 & 1
\end{amatrix}
\xrightarrow[\substack{R_2-10^{-4}R_1}]{}
\begin{amatrix}{2}{1}
1 & 1 & 2 \\
0 & 1 & 1
\end{amatrix}
\end{split}
\end{equation*}
gives us
\begin{equation*}
\begin{cases}
x_1=1\\
x_2=1
\end{cases}
\end{equation*}
\subsubsection*{Condition number}
Condition number should describe the stability of a computed matrix. The bigger the condition number $\kappa$ the less stable the (coefficient) matrix is. It is computed as:
\begin{equation}
\kappa(\mathbf{A})=||\mathbf{A}||_2\cdot||\mathbf{A}^{-1}||_2
\end{equation}
where
\begin{equation}\label{eqn:2-norm}
\begin{split}
||\mathbf{A}||_2 = \sqrt{\lambda_{max}A^TA}
\end{split}
\end{equation}
$\matr{A}^{-1}$ may be computed via Gauss-Jordan algorithm with pivoting:
\begin{equation*}
\begin{split}
\begin{amatrix}{1}{1}
\matr{A} & \matr{I}
\end{amatrix} =
\begin{amatrix}{2}{2}
\frac{1}{1000} & 1 & 1 & 0\\
1 & 1 & 0 & 1
\end{amatrix}
\xrightarrow[R_1\leftrightarrow R_2]{}
\begin{amatrix}{2}{2}
1 & 1 & 0 & 1\\
\frac{1}{1000} & 1 & 1 & 0
\end{amatrix}
\xrightarrow[\substack{R_2-\frac{1}{1000}R_2}]{}\\
\xrightarrow[\substack{R_2-\frac{1}{1000}R_2}]{}
\begin{amatrix}{2}{2}
1 & 1 & 0 & 1\\
0 & 1 & 1 & 0
\end{amatrix}
\xrightarrow[\substack{R_1-R_2}]{}
\begin{amatrix}{2}{2}
1 & 0 & -1 & 1\\
0 & 1 & 1 & 0
\end{amatrix} =
\begin{amatrix}{1}{1}
\matr{I} & \matr{A^{-1}}
\end{amatrix}
\end{split}
\end{equation*}
Now, using the equation~\ref{eqn:2-norm}
\parbox{0.5\textwidth}{
\begin{gather*}
\matr{A}^T\matr{A} =
\begin{bmatrix}
1 & 1 \\
1 & 2
\end{bmatrix} \\
\det\begin{pmatrix}
1-\lambda & 1 \\
1 & 2-\lambda
\end{pmatrix} = 0 \\
\lambda=\frac{3\pm\sqrt{5}}{2}
\end{gather*}
}
\parbox{0.5\textwidth}{
\begin{gather*}
\matr{A}^{-1^T}\matr{A}^{-1} =
\begin{bmatrix}
2 & -1 \\
-1 & 1
\end{bmatrix} \\
\det\begin{pmatrix}
2-\lambda & -1 \\
-1 & 1-\lambda
\end{pmatrix} = 0 \\
\lambda=\frac{3\pm\sqrt{5}}{2}
\end{gather*}
}
we finally obtain
\begin{equation*}
\kappa(\mathbf{A})=\frac{3\pm\sqrt{5}}{2}\approx2.618
\end{equation*}
which is a very low number indicating, that the matrix $\matr{A}$ is computationally stable.

View File

@ -0,0 +1,23 @@
A = [0.835, 0.667;
0.333, 0.266];
b = [0.168; 0.067];
bp = [0.168; 0.066];
B = Alg5([A b])
Bp = Alg5([A bp])
kappa = cond(A)
B =
1.0000 0 1.0000
0 1.0000 -1.0000
Bp =
1.0000 0 -666.0000
0 1.0000 834.0000
kappa =
1.3238e+06

View File

@ -0,0 +1,37 @@
\subsection{Problem 4}
Solve the system of linear equations:
\begin{equation*}
\systeme{0.835x_1 + 0.667x_2 = 0.168,0.333x_1 + 0.266x_2 = 0.067}
\end{equation*}
Then slightly perturb $b_2$ from $0.067$ to $0.066$ and compute the solution to the perturbed system. Explain the change in the solution by computing the condition number of the system matrix.
\subsubsection*{Solution}
\begin{equation*}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix} =
\begin{amatrix}{2}{1}
0.835 & 0.667 & 0.168\\
0.333 & 0.266 & 0.067
\end{amatrix} \xrightarrow[R_2-0.333R_1]{\frac{R_1}{0.835}}
\begin{amatrix}{2}{1}
1 & 0.7988 & 0.2012\\
0 & 0 & 0
\end{amatrix}
\end{equation*}
which yields infinite many solutions. Perturbing $b_2$ we obtain:
\begin{equation*}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b'}
\end{amatrix} \xrightarrow[R_2-0.333R_1]{\frac{R_1}{0.835}}
\begin{amatrix}{2}{1}
1 & 0.7988 & 0.2012\\
0 & 0 & -0.001
\end{amatrix}
\end{equation*}
which yields none solutions. Performing the same calculations with Algorithm~\ref{algorithm:5}:
\lstinputlisting[style=Matlab-editor]{problems/Problem4.m}
With enough precision \MATLAB presented two valid solutions. Both of them differed by a factor of hundreds, which may be explained by a huge coefficient number (way over a million).

View File

@ -0,0 +1,17 @@
A = [2, 1, 2;
1, 2, 3;
4, 1, 2];
[P, Q, L, U] = Alg2(A);
I = P*eye(3);
% Ly = b and Ux = y
y = Alg3(L, I); % Forward substitution
x = Q*Alg4(U, y); % Backward substitution
inv(A) - x
ans =
1.0e-15 *
-0.2220 0.0555 0.1110
0.8882 -0.4441 -0.6661
0 0.1110 0

View File

@ -0,0 +1,17 @@
\subsection{Problem 5}
Find $\mathbf{A^{-1}}$ to:
\begin{equation*}
\matr{A} =
\begin{bmatrix}
2 & 1 & 2 \\
1 & 2 & 3 \\
4 & 1 & 2
\end{bmatrix}
\end{equation*}
solving the system $\mathbf{AX=I_{3}}$.
\subsubsection*{Solution}
\lstinputlisting[style=Matlab-editor]{problems/Problem5.m}
which judges well our algorithms.

View File

@ -0,0 +1,26 @@
A = [1 2 3 4;
-1 1 2 1;
0 2 1 3;
0 0 1 1];
b = [1; 1; 1; 1];
% PA = LU
[L, U, P] = Alg8(A);
det(A) - prod(diag(P.'*U))
% Ly = b and Ux = y
y = Alg3(L, P*b); % Forward substitution
x = Alg4(U, y); % Backward substitution
x - A\b
ans =
0
ans =
1.0e-15 *
0.4441
0
0
0

View File

@ -0,0 +1,26 @@
\subsection{Problem 6}
Apply the LU factorization to the matrix
\begin{equation*}
\matr{A} =
\begin{bmatrix}
\phantom{-}1 & 2 & 3 & 4 \\
-1 & 1 & 2 & 1 \\
\phantom{-}0 & 2 & 1 & 3 \\
\phantom{-}0 & 0 & 1 & 1
\end{bmatrix}
\end{equation*}
Then calculate $\det(\matr{A})$ using the matrix $\matr{U}$. Finally solve $\matr{A}\matr{x}=\matr{b}$ for $\matr{b}=[1\dots1]^T$.
\subsubsection*{Mathematics}
The LU Factorization decomposes matrix $\matr{A}$ into an upper triangular matrix $\matr{U}$ and unit lower triangular matrix $\matr{L}$, so that
\begin{equation*}
\matr{A} = \matr{L}\matr{U}
\end{equation*}
Using the property of a determinant and a fact, that $\det(\matr{L}) = 1$ one can calculate $\det(\matr{A})$ as
\begin{equation*}
\det(\matr{A}) = \det(\matr{L}\matr{U}) = \det(\matr{L}) \cdot \det(\matr{U}) = \det(\matr{U}) = u_{11}\cdots u_{nn}
\end{equation*}
\subsubsection*{Solution}
A glance at the matrix $\matr{A}$ tells us that it is not strictly diagonally dominant, so a pivoting algorithm should be used.
%\footnote{$\matr{A}\in\mathbb{R}^{n\times n}$ is \textit{strictly diagonally dominant} if $|a_{ii}|>\sum_{j=1 j i}^n|a_{ij}|$}
\lstinputlisting[style=Matlab-editor]{problems/Problem6.m}

View File

@ -0,0 +1,24 @@
A = hilb(5);
[L, U] = Alg7(A);
cond(A)
L*U - A
prod(diag(U)) - det(A)
ans =
4.7661e+05
ans =
1.0e-16 *
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 -0.1388
0 0 0 -0.1388 0
ans =
1.6620e-23

View File

@ -0,0 +1,21 @@
\subsection{Problem 7}
Let $\mathbf{A} = \left[a_{ij}\right] \in\mathbb{R}^{N\times N}$ with, $a_{ij} = \frac{1}{i + j - 1}$ (Hilbert matrix). For $N=5$, perform the LU factorization of the matrix $\mathbf{A}$. Then, compute det($\mathbf{A}$).
\subsubsection*{Mathematics}
Hilbert matrices are an example of ill-conditioned matrices, which -- with their high $\kappa$ -- makes the numerical computations highly unstable. For our $\mathbf{H} = \left[h_{ij}\right] \in\mathbb{R}^{5\times 5}$:
\begin{equation*}
\matr{H} =
\begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9}
\end{bmatrix}
\end{equation*}
$\kappa(\matr{H})\approx4.7\cdot10^5$ which is a huge value similar to this in the Problem 4.
\subsubsection*{Solution}
\lstinputlisting[style=Matlab-editor]{problems/Problem7.m}
The above results may look promising, but a determinant calculated both by \MATLAB and our algorithms is of the order of $4\cdot10^{-12}$, which for numerical computations is highly not useful.

View File

@ -0,0 +1,32 @@
A = [ 1 -1 0 0;
-1 2 -1 0;
0 -1 2 -1;
0 0 -1 2];
if all(eig(A) > 0)
C = Alg10(A)
C*C.' - A
inv(C)
end
C =
1 0 0 0
-1 1 0 0
0 -1 1 0
0 0 -1 1
ans =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
ans =
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

View File

@ -0,0 +1,16 @@
\subsection{Problem 8}
Let
\begin{equation*}
\matr{A} =
\begin{bmatrix}
\phantom{-}1 & -1 & \phantom{-}0 & \phantom{-}0 \\
-1 & \phantom{-}2 & -1 & \phantom{-}0 \\
\phantom{-}0 & -1 & \phantom{-}2 & -1 \\
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2
\end{bmatrix}
\end{equation*}
Check whether the symmetric matrix $\mathbf{A}$ is positive-definite. If so, apply the Cholesky factorization. Then, compute its inverse.
\lstinputlisting[style=Matlab-editor]{problems/Problem8.m}

View File

@ -0,0 +1,3 @@
\subsection{Problem 9}
Let $\mathbf{A}$ be the Pascal matrix of order 100 (\textit{pascal} function in Matlab). Check whether the matrix is positive definite. If so, apply the Cholesky factorization and give interpretation of the obtained factor.

View File

@ -0,0 +1,65 @@
\subsection{Problem 1}
Solve the system and find the pivots when:
\begin{equation*}
\systeme{2u-v=0,-u+2v-w=0,-v+2w-z=0,-w+2z=5}
\end{equation*}
\subsubsection*{Mathematics}
The solution to a linear system like the one presented above may be obtained via Gauss-Jordan Elimination. An augmented matrix
$\matr{B} = \begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix}$, where $\matr{A}$ is a coefficient matrix, and $\matr{b}$ is a column vector of constant terms, is assembled. Then, the algorithm implemented in \ref{algorithm:5} is performed. Note, that none of the $a_{ii}$ can be equal to zero for this algorithm to work properly\footnote{Explanation of this property is presented in \ref{problem:2}}.
\subsubsection*{Solution}
Manual calculations were performed. In the following transformations a row normalization is presented above the arrow and then a zeroing is below it.
\begin{equation*}
\begin{split}
\begin{amatrix}{1}{1}
\matr{A} & \matr{b}
\end{amatrix} =
\begin{amatrix}{4}{1}
\phantom{-}2 & -1 & \phantom{-}0 & \phantom{-}0 & 0\\
-1 & \phantom{-}2 & -1 & \phantom{-}0 & 0\\
\phantom{-}0 & -1 & \phantom{-}2 & -1 & 0\\
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2 & 5
\end{amatrix} \xrightarrow[R_2 + R_1]{\frac{1}{2}R_1}
\begin{amatrix}{4}{1}
\phantom{-}1 & -\frac{1}{2} & \phantom{-}0 & \phantom{-}0 & 0\\
\phantom{-}0 & \phantom{-}\frac{3}{2} & -1 & \phantom{-}0 & 0\\
\phantom{-}0 & -1 & \phantom{-}2 & -1 & 0\\
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2 & 5
\end{amatrix} \xrightarrow[\substack{R_1+\frac{1}{2}R_2\\R_3+R_2}]{\frac{2}{3}R_2} \\
\xrightarrow[R_3+\frac{2}{3}R_2]{\frac{2}{3}R_2}
\begin{amatrix}{4}{1}
\phantom{-}1 & \phantom{-}0 & -\frac{1}{3} & \phantom{-}0 & 0\\
\phantom{-}0 & \phantom{-}1 & -\frac{2}{3} & \phantom{-}0 & 0\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}\frac{4}{3} & -1 & 0\\
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}2 & 5
\end{amatrix} \xrightarrow[\substack{R_1+\frac{1}{3}R_3\\R_2+\frac{2}{3}R_3\\R_4+R_3}]{\frac{3}{4}R_3}
\begin{amatrix}{4}{1}
\phantom{-}1 & \phantom{-}0 & \phantom{-}0 & -\frac{1}{4} & 0\\
\phantom{-}0 & \phantom{-}1 & \phantom{-}0 & -\frac{1}{2} & 0\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}1 & -\frac{3}{4} & 0\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}0 & -\frac{4}{3} & 5
\end{amatrix} \xrightarrow[\substack{R_1+\frac{1}{4}R_4\\R_2+\frac{1}{2}R_4\\R_3+\frac{3}{4}R_4}]{-\frac{3}{4}R_4}\\
\xrightarrow[\substack{R_1+\frac{1}{4}R_4\\R_2+\frac{1}{2}R_4\\R_3+\frac{3}{4}R_4}]{-\frac{3}{4}R_4}
\begin{amatrix}{4}{1}
\phantom{-}1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & 1\\
\phantom{-}0 & \phantom{-}1 & \phantom{-}0 & \phantom{-}0 & 2\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}1 & \phantom{-}0 & 3\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1 & 4
\end{amatrix} \rightarrow
\begin{cases}
u=1\\
v=2\\
w=3\\
z=4
\end{cases}
\end{split}
\end{equation*}
Above result was verified with the Algorithm~\ref{algorithm:5}:
\lstinputlisting[style=Matlab-editor]{problems/Problem1.m}

View File

@ -0,0 +1,15 @@
\documentclass[a4paper]{article}
\usepackage{WUST-AAE-NMaO-Report}
\title{Numerical Algorithms Report 1: Iterative Linear Solvers}
\author{Sergiusz Warga 230757}
\date{\today}
\reporttutor{dr hab. inż. Rafał Zdunek}
\begin{document}
\maketitle
\tableofcontents
\pagebreak
\end{document}

View File

@ -1,8 +0,0 @@
# Direct Methods for Solving Linear Systems
## Bibliography
References in the code comments are represented by `[number]`:
- 1
- 2 Golub, van Loan, Matrix Computations, 3rd edition

6
Dockerfile Normal file
View File

@ -0,0 +1,6 @@
FROM alpine:3.16.0
RUN apk update && \
apk add --no-cache \
texlive-full=20220403.62885-r2 \
make=4.3-r0

13
LICENSE Normal file
View File

@ -0,0 +1,13 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

63
Makefile Normal file
View File

@ -0,0 +1,63 @@
BUILDDIR = `pwd`/build
DOCKER_IMAGE = latex-builder
LATEX_OPTIONS = -pdf
# -interaction=nonstopmode
PACKAGE_NAME = WUST-AAE-NMaO-Report
SOURCE_DIRS = $(shell ls -d */ | grep -v "^build")
SOURCE_TEXS = $(SOURCE_DIRS:=Report/main.tex)
PDFBUILDS = $(addprefix $(BUILDDIR)/, $(SOURCE_DIRS:/=.pdf))
.DEFAULT_GOAL := docker
.PHONY : clean
clean :
-rm -r $(BUILDDIR) $(PACKAGE_NAME).sty
.PHONY : all
all : $(PDFBUILDS)
.PHONY : sty
sty : $(PACKAGE_NAME).sty
$(PACKAGE_NAME).sty : $(PACKAGE_NAME).ins $(PACKAGE_NAME).dtx
mkdir -p $(BUILDDIR)
yes | latex -output-directory=$(BUILDDIR) $(PACKAGE_NAME).ins
cp $(BUILDDIR)/$@ $@
$(PDFBUILDS) : $(BUILDDIR)/%.pdf: $(PACKAGE_NAME).sty %/Report/main.tex
mkdir -p $(BUILDDIR)
cp logo-pwr-2016.pdf $(BUILDDIR)/
latexmk $(LATEX_OPTIONS) \
-cd \
-jobname=$* \
-output-directory=$(BUILDDIR) \
$*/Report/main
.PHONY : hadolint
hadolint : Dockerfile
docker run --rm --interactive hadolint/hadolint < Dockerfile
.PHONY : image
image : Dockerfile
docker build \
--tag $(DOCKER_IMAGE) \
.
.PHONY : docker
docker : image ## Compile the project via the latex-builder docker image
docker run \
--rm \
--interactive \
--workdir /data \
--volume `pwd`:/data \
--name=$(DOCKER_IMAGE) \
$(DOCKER_IMAGE) \
sh -c "make all"

View File

@ -0,0 +1 @@
# Numerical Methods and Optimization

145
WUST-AAE-NMaO-Report.dtx Normal file
View File

@ -0,0 +1,145 @@
% \iffalse meta-comment
%
% DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
%
% Author: Sergiusz Warga <sergiusz.warga@gmail.com>
%
% \fi
%
% \iffalse
%<*driver>
\ProvidesFile{WUST-AAE-NMaO-Report.dtx}
%</driver>
%<package>\NeedsTeXFormat{LaTeX2e}[2005/12/01]
%<package>\ProvidesPackage{WUST-AAE-NMaO-Report}
%<*package>
[2023/01/06 v0.1.0 WUST AAE NMaO Report package]
%</package>
%
%<*driver>
\documentclass{ltxdoc}
\usepackage[
hidelinks,
bookmarks,
bookmarksopen,
bookmarksopenlevel=2,
pdftitle={WUST AAE NMaO Report LaTeX package},
pdfauthor={Sergiusz Warga}
]{hyperref}
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\setlength\hfuzz{15pt} % dont show so many
\hbadness=7000 % over- and underfull box warnings
\begin{document}
\DocInput{WUST-AAE-NMaO-Report.dtx}
\end{document}
%</driver>
% \fi
%
% \CheckSum{0}
%
% \changes{v0.1.0}{2023/01/06}{Initial version}
%
% \GetFileInfo{WUST-AAE-NMaO-Report.dtx}
%
% \DoNotIndex{\@date, \@title}
% \DoNotIndex{\\}
% \DoNotIndex{\begin}
% \DoNotIndex{\DeclareRobustCommand, \dimexpr, \doublerulesep}
% \DoNotIndex{\end}
% \DoNotIndex{\fbox, \fboxrule, \fboxsep}
% \DoNotIndex{\gdef}
% \DoNotIndex{\hoffset, \Huge}
% \DoNotIndex{\Large}
% \DoNotIndex{\newlength, \newpage, \null}
% \DoNotIndex{\oddsidemargin}
% \DoNotIndex{\paperwidth}
% \DoNotIndex{\renewcommand}
% \DoNotIndex{\setlength}
% \DoNotIndex{\textwidth}
% \DoNotIndex{\uppercase}
% \DoNotIndex{\vfill}
%
% \title{WUST AAE NMaO Report package\thanks
% {This document corresponds to \texttt{WUST-AAE-NMaO-Report}~\fileversion,
% dated \filedate.}}\author{Sergiusz Warga\texttt{sergiusz.warga@gmail.com}}
%
% \maketitle
%
% \StopEventually{\PrintChanges \PrintIndex}
%
% \section{Implementation}
%
% \subsection{Packages}
% \begin{macrocode}
\RequirePackage{graphicx}
\RequirePackage{xspace}
% \end{macrocode}
%
% \subsection{Dimentions}
%
% Text area.
%
% \begin{macrocode}
\setlength{\textwidth}{140mm}
% \end{macrocode}
%
% Center the text area.
%
% \begin{macrocode}
\setlength{\hoffset}{
\dimexpr
(\paperwidth-\textwidth)/2-\oddsidemargin-1in
}
\DeclareRobustCommand*{\reportgroup}[1]{\gdef\@reportgroup{#1}}
\DeclareRobustCommand*{\reporttutor}[1]{\gdef\@reporttutor{#1}}
\DeclareRobustCommand*{\reportclassdate}[1]{\gdef\@reportclassdate{#1}}
\DeclareRobustCommand*{\reportlabassistant}[1]{\gdef\@reportlabassistant{#1}}
\reportgroup{}
\reporttutor{}
\reportclassdate{}
\reportlabassistant{}
% \end{macrocode}
% \DescribeMacro{\maketitle}
% \begin{macrocode}
\renewcommand{\maketitle}{
\begin{titlepage}
\thispagestyle{empty}
\begin{center}
\includegraphics{logo-pwr-2016.pdf}
\vspace{\baselineskip}
\rule{\linewidth}{0.2 mm}\\[0.4 cm]
{\huge \bfseries \@title}\\
\rule{\linewidth}{0.2 mm}\\[1.5 cm]
\vfill
\large
\textsc{\@author}\\
\vspace{\baselineskip}
\textsc{Tutor: \@reporttutor}\\
\textsc{Laboratory group: Monday 13:15}\\
\end{center}
\end{titlepage}
}
% \end{macrocode}
% MATLAB command.
% \begin{macrocode}
\newcommand{\MATLAB}{\textsc{Matlab}\xspace}
% \end{macrocode}
% Bold letters in matrices
% \begin{macrocode}
\newcommand{\matr}[1]{\mathbf{#1}}
% \end{macrocode}
% Augmented matrix
% \begin{macrocode}
\newenvironment{amatrix}[2]{%
\left[\begin{array}{@{}*{#1}{c} | c *{#2}{c} @{}}
}{%
\end{array}\right]
}
% \end{macrocode}
% \Finale

38
WUST-AAE-NMaO-Report.ins Normal file
View File

@ -0,0 +1,38 @@
%%
%% DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
%%
%% Author: Sergiusz Warga <sergiusz.warga@gmail.com>
%%
\input docstrip.tex
\keepsilent % Turn off DocStrip activity reports
\usedir{tex/latex/WUST-AAE-NMaO-Report}
\preamble
This is a generated file.
To what the fuck you want with it.
\endpreamble
\generate{
\file{WUST-AAE-NMaO-Report.sty}
{\from{WUST-AAE-NMaO-Report.dtx}{package}}
}
\obeyspaces
\Msg{****************************************************}
\Msg{* *}
\Msg{* To finish the installation you have to move the *}
\Msg{* following file into a directory searched by TeX: *}
\Msg{* *}
\Msg{* WUST-AAE-NMaO-Report.sty *}
\Msg{* *}
\Msg{* To produce the documentation run the file *}
\Msg{* WUST-AAE-NMaO-Report.dtx through LaTeX. *}
\Msg{* *}
\Msg{* Happy TeXing! *}
\Msg{* *}
\Msg{****************************************************}
\endbatchfile

62
WUST-AAE-NMaO-Report.sty Normal file
View File

@ -0,0 +1,62 @@
%%
%% This is file `WUST-AAE-NMaO-Report.sty',
%% generated with the docstrip utility.
%%
%% The original source files were:
%%
%% WUST-AAE-NMaO-Report.dtx (with options: `package')
%%
%% This is a generated file.
%%
%% To what the fuck you want with it.
%%
\NeedsTeXFormat{LaTeX2e}[2005/12/01]
\ProvidesPackage{WUST-AAE-NMaO-Report}
[2023/01/06 v0.1.0 WUST AAE NMaO Report package]
\RequirePackage{graphicx}
\RequirePackage{xspace}
\setlength{\textwidth}{140mm}
\setlength{\hoffset}{
\dimexpr
(\paperwidth-\textwidth)/2-\oddsidemargin-1in
}
\DeclareRobustCommand*{\reportgroup}[1]{\gdef\@reportgroup{#1}}
\DeclareRobustCommand*{\reporttutor}[1]{\gdef\@reporttutor{#1}}
\DeclareRobustCommand*{\reportclassdate}[1]{\gdef\@reportclassdate{#1}}
\DeclareRobustCommand*{\reportlabassistant}[1]{\gdef\@reportlabassistant{#1}}
\reportgroup{}
\reporttutor{}
\reportclassdate{}
\reportlabassistant{}
\renewcommand{\maketitle}{
\begin{titlepage}
\thispagestyle{empty}
\begin{center}
\includegraphics{logo-pwr-2016.pdf}
\vspace{\baselineskip}
\rule{\linewidth}{0.2 mm}\\[0.4 cm]
{\huge \bfseries \@title}\\
\rule{\linewidth}{0.2 mm}\\[1.5 cm]
\vfill
\large
\textsc{\@author}\\
\vspace{\baselineskip}
\textsc{Tutor: \@reporttutor}\\
\textsc{Laboratory group: Monday 13:15}\\
\end{center}
\end{titlepage}
}
\newcommand{\MATLAB}{\textsc{Matlab}\xspace}
\newcommand{\matr}[1]{\mathbf{#1}}
\newenvironment{amatrix}[2]{%
\left[\begin{array}{@{}*{#1}{c} | c *{#2}{c} @{}}
}{%
\end{array}\right]
}
\endinput
%%
%% End of file `WUST-AAE-NMaO-Report.sty'.

BIN
logo-pwr-2016.pdf Normal file

Binary file not shown.