AAE-NA-Labs/Direct Methods for Solving Linear Systems/Alg2_gaussian_elimination_with_complete_pivoting.m

47 lines
1.3 KiB
Mathematica
Raw Normal View History

2021-03-13 13:42:56 +01:00
function [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
2021-03-13 20:23:23 +01:00
% Algorithm 2: Gaussian Elimination with Complete Pivoting.
2021-03-14 18:40:53 +01:00
% [P, Q, L, U] = Alg2_gaussian_elimination_with_complete_pivoting(A)
% computes the complete pivoting factorization PAQ = LU.
2021-03-14 18:40:53 +01:00
[m, n] = size(A);
2021-03-13 20:23:23 +01:00
2021-03-14 18:40:53 +01:00
if m ~= n
error('Matrix is not square!')
end
2021-03-14 18:40:53 +01:00
% p and q are permutation vectors respectively rows and columns
p = 1:m;
q = 1:m;
2021-03-06 20:58:15 +01:00
2021-03-14 18:40:53 +01:00
% The following algorithm is based on the Algrotihm 3.4.2 from [2].
for k = 1 : m-1
i = k:m;
j = k:m;
% Find the maximum entry to be the next pivot
2021-03-06 20:58:15 +01:00
[max_val, rows_of_max_in_col] = max(abs(A(i, j)));
2021-03-13 20:23:23 +01:00
[~, max_col] = max(max_val);
2021-03-06 20:58:15 +01:00
max_row = rows_of_max_in_col(max_col);
2021-03-14 18:40:53 +01:00
% Assign value of mu and lambda in respect to the main matrix A
[mi, lm] = deal(max_row+k-1, max_col+k-1);
2021-03-14 18:40:53 +01:00
% Interchange the rows and columns of matrix A...
A([k mi], 1:m) = deal(A([mi k], 1:m));
A(1:m, [k lm]) = deal(A(1:m, [lm k]));
% ...and respective permutation vectors entries.
p([k, mi]) = p([mi, k]);
q([k, lm]) = q([lm, k]);
% Perform Gaussian elimination with the greatest pivot
if A(k, k) ~= 0
2021-03-14 18:40:53 +01:00
rows = k+1 : m;
2021-03-06 18:17:36 +01:00
A(rows, k) = A(rows, k)/A(k, k);
A(rows, rows) = A(rows, rows) - A(rows, k) * A(k, rows);
end
2021-03-06 18:17:36 +01:00
end
2021-03-06 20:58:15 +01:00
2021-03-14 18:40:53 +01:00
I = eye(m);
2021-03-13 20:23:23 +01:00
U = triu(A);
L = tril(A, -1) + I;
P = I(p, :);
2021-03-14 18:40:53 +01:00
Q = I(:, q);
end